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ABST?ACT

This thesis presents' a general discussion/of the problems involved

in estimating the Circular Probable Error ___ f re. t o- 3

.4 6 A comparison is nade between the estimates of the CEP under

tw distinct models. The models are identical except for the location

of the mean vector in relation to the target. The assumption of depen-

dence is made in both iodels and the resulting estimates are compared

with the corresponding estinates obtained under the assumption of Inde-

pendence. Confidence interval-estmates of the CEP are also presented.

No tethods of removing outlier or *',Iaverick* observations are intro.-

duced and some of the possible effects on the estimated C EP are discussed.

7he different estimating procedures are illustrated wit: three numnerical

problems.
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The tcr. '>iZ2" is fa.:iliar to r.ost ::aval Cfficers, but the underlying

assu .;ptionc upon which this mneasure of effectiveness .:s are often

,Asunderstood. Therefore, it is the objective of this thcsis to explain

as fully as possible what the C'P is and to illustrate sonme of the

mcthods available to estI,.ate the C1'.

lhe C.3P vas initlally developed in order to give some criterion for

.easuring the expected effectiveness of a particular weapon system and to

give sone :eans for comparing similar weapon systems or weapons, In

order to develop this criterion, it is essential that the assumpttons

used are ,ell understood and established. The approach :ost often used

is to assu-m :e that the errors in and across the line o1 sight are inde-

pendent and that the variances are equal with the justificaion that

these assumptions produce a negligible error. However, an error may be

introduced and it is necessary to at least understand what is bing

assumed before making judgement on the le-ality of any assumption, -'his

thesis therefore, attemipts to e:;plain such assumptions and to compare

.possible results of umking certain assuiptions in three example problems.

Thc problems are all ficticious and utilized only for te purpose of

explaining the estiratino procceures and assumptions.

-he thesis is primarily directed at the reader with a oolleg*e back-

Cround in calculus, some matrix theory, and some fcel for basic proba.

bility and statistical procedures. 'he contents are arranged in six

sections and throe appendices. Section I is an introduction to the prob.

bIn and the basic mathematical concepts which will be used. Sections 1I

lii
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and III introduce the most coamonly used estimating procedures. Section

IV explains the problem of deleting outlying observations from the deter-

mination of the estimate. Section V introduces the confidence interval.

Section VI is a summary of the techniques Used in the previous sections.

Appendix A is concerned with the mathematical techniques which are used
\

to explain and transform the true orientation of the dependent variables.

Appendix 3 explains two methods of obtaining unbiased estimates of the

CZP. Appendix C explains in detail the methods of Integrations used.

It is recommended that Appendices A and C be studied before starting

Section II.

This thesis was written during the period January-June 1962 at the

United States Naval Post Graduate School, bntereyo California. I wish

to express my gratitude to Professor J. R. Borsting for his continued

patience, encouragement, and most competent guidance while acting as

faculty advisor, and to Professor Max Woods for his continuous aid and

technical understanding of the problem while acting as second reader.

I also wish to thank my wife for the roral, clerical, and artistic

assistance given me during the writing of this thesis as well as the

past two years.
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SECCION I

INTRODUCTION TO TZ P,11OLE1K

1.1 General Discussion of the Circular Probable Error

The problem of determining useful estimates of the parameters

which lescrlbe the distribution of the fall of shot about a target is

directly related to the high cost of testing expensive weapn systems.

Since relatively few teats are allowed because of this expense, it is

not improbable that a good weapon system could be completely rejected

because of inefficient utilization of the small amount of data available.

Also, the size and yield of the warhead is directly related to the esti-

mated parameters. If the estimated variance is large, the effective

radius will alsc have to be large to cover the target complex, and in

turn the missile will not be eble to reach the range of the same missile j
with a smaller warhead. The most efficient use of the limited data will

thus greatly reduce the risk Involved in reducing the warhead size and

increase the potential range. It also may aid in weapon deployment or

assignment to larger targets because of the greater confidence that can

be placed in the estimates. It seems logical that if a great deal of

confidance can be placed in the weapon, fewer weapons will have to be

assigned to a target, thus releasing some weapons for other targets.

The important point is that the confidence placed on the estimators

must be high enough to reduce the risk Involved and provide a sound

basis for decision.

(no method, which is comtnly used, to measure and compare the

estimated parameters, is called the circular probable error or CP

method. The CEP is defined as the radius of the circle with center

I



at (ux.u,) which includes 50% of a bivariate probability mass* The

illustration in figure (1) shows the forn of this function. It is to

be noted that nest of the volume under the curve is centered at the tar-

get and decreases as the distance increases from the target. 1his par.

ticular function is well founded historically on the basis of the

analysis of observations from long range gun fire

///

- 1

ef SO% of Vo I AWv
C#A4' £ Y))

Bivariate Probability Mase

Figure 1

The bivariate normal distribution is a generalization of the normal

distribution of a single variate and i bell shaped as shown in figure (1)

above* Any plane parallel to the xy plane that cuts the surface will

intersect the bell in the elliptical curve shown in figure (2),

2
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Bivariate Density Function which has been
Oit by a Plane Parallel to the xy Plane.

Figure 2

Any plane perpendicular to the xy plane will cut the surface in

a curve of the normal form as shown in figure (3).

/ \

Bivarate Density Function which has been Cat

by a Plane Perpendioular to the xgy Plane

Figure 3

The bivariate density function actually represents a five parameter

family of distributions, the parameters being the means (uxu), the

variances~7~(' and the correlation coefficient re. This function Is

symmtric about the meane and hs its greatest value at the point (ux.Uy).

It should also be noted that if the errors in the x and y directions are

independent and the variances equal, then the distribution will be in

the shape of a bell with two of the opposites sides "pushed in"o an

3



equal amount. The effect of the variance is shown in figure (4).

Two Bivariate Density Functions with
Different Variances about (uxU ): Side View

Figure 4

If the variances are equal, a plane cutting the surface, as in

figure (2), will intersect the bell in a circle.

The height of the curve, forming the density function, at any

point "all is related to the probability of that point. Since this func-

tion is continuous, the probability must be expressed in the form of an

interval' since the probability of any single point is zero. However,

the probability that a ,. ".. v ule X. in the distribution being

considered, falls in an interval is equal to the area under the curve

in the interval being considered, That is, the probability that

afXAb is equal to the area shown under the curve in fIgure (5).

Note that since the area under the curve about the point (uxu y) is the

greatest, the probability that the random variable X fall in this Interval

is greater than that of an interval of equal length away from the point

(UU). This is shown in figure (6).

4
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Univariate Density Function Univariate Density Function
Showing the Area Under Con. Showing the Areas Under Con.
sideration When Determining sideration in the Intervals

P(a <Xb). (a,b) and (cd) where
b-a - d-c.

Figure 5 Figure 6

1o2 Mathematical Notation

X and Y are said to have a bivariate normal distribution If their

Joint density function, fXY(x.y), is given by

1.1.1

The quantity x to said to be an observed value of a numerical

valued random phenomenon X if for every real number x there exists a

probability that X is less than or equal to x. In this problem the

observed values of the random variables X and Y are the coordinates

of the data points with respect to the target. These oordinates can

also be referred to as miss distance& in and across the line of sight.

-1 _



1.2.2

:he parameters u and u are the mean values in the x and yx y

directions respectively. The mean of a probability law is equivalent

to the expected value of the random variable with respect to the proba-

bility law, This is written as:

(1.2) u =s )f f f,(x,y)dxdy
-oo

(1.3) uy - f,, (x,y)dxdy

The mean value cannot be determined exactly in our problem even if all

of the missiles have been fired but estimates of the mean values can

be determined from the observations.

1,2.3

The expressions (x - u x ) and (y - u y) are the deviations from the

mean values in the x and y directions respectively.

1.2.4

and Ware the standard deviations in the x and y directions

respectively. The standard deviation is defined as the square root of

the variance of the probability law. The variance V0is defined as the

second central moment of the probability law and is defined by:

(1.4) E 3()2  [ f(X . u )2 1X2 ) . u2

It should be noted that the mean values determine the location (u xu y)

of the center of the normal density function and the standard devia-

tions (7 and 71) determine the shape of the function about the mean

in the x and y directions respectively.



1.2.5

The correlation coefficient of two jointly distributed random

variables X and Y is defined bye- where

(1.5) COV (X$Y) - &(X Y) . Swam

z(X Y)f &Yf XOY(xy)dxdy

The correlation coefficient provides a measure of how good a predic-

tion can be formed on one of the random variables on the basis of the

observed value of the other random variable. In other words, if the

value of one of the random variables is given, the expected value of

the other random variable can be determined. This may be written as

8(X1Y) where the value of Y Is given. That is,

00

(1.6) .(Xl ) .Lx fMY (xiy)dx where fXIY(xiy)

is the conditional density function of the random variable X given

the value of the random variable Y. The conditional density function

is derived from the conditional probability of a eandom event A,

given a'random variable X. This Ation tons the basis of t", mthe.

matical treatment of jointly distributed random variables that are

not independent. 1

In the particular case where two random variables X and Y are

jointly normally distributed, the conditional expected value of the

random variable X given that the random variable Y is some particular

value y, is a linear function. This.linear function is relatd to

the orientation of the shape of the density function as shown in

Appendix A.
1 "Wlden frobability Theory and Its Applications" by Bmnuel Parson
/1/ of Stanford University.
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in order to simplify the notation, it will be convenient to

represent thc bivariate density function in matrix notation. The

termis in for h ula1.1 are first arranged in the form

(1.7 -'A71(V

wherem 
Z -m(X ux)

y

/ 

Ae

-1

1'sing this notation, we arc now ready to look at several models

investigating the CEP and confidence Interval of the CEP,

1.3 2 he Basic Problem In Estimating the CEP.

':be problem of estimating the CEP Is essentialIly that o2 fineing

the radius of a circle Wth center at (uxqu y) such that the probability

is .5 that a random point (#"qY) will lie Inside this circle. This may

be expressed as

(1*3 PL-Ou 2+(~u 2 r~ a (XY) xey where a, -.(xqy)
(1.3) PL~~~ 2 Cu)(r~ ~f~x~ Y Is given'ty

8oml (.)



In order to introduce the problem, the assumptions will be made

that the mtean values are zero (u.-uy-0), that the errors in the x and y

directions are independent (f - 0), and that the standard deviations

are equal (7 -'y - V). The probability statement is thus simpli-

fiod to

1.119)rPj+ Y1<(r'exp - Ix~ 4 2 dxdy - .5

In order to perform the integration let R2 -:,2 + y2 , TanQ - Y
X

Y - ,,sini,, X - ',cosg.

Then I'1(,r) 1 r w -I dxdi- _f • [Iwr dy/kr dy/dQ[

qr"afrr ( )
,I.10) Z? (: r ) - 1 (r exp . dr - I - ep -r"' 2 .5

0 0

Therefore, the C',P - r - 1.1774T.

'"he problem o. estimating the CEP is thus one of obtaining a

function of the n sample points (x1,Yl).,........(xnyn) which will

cat-late the standard deviation v". rho estimators are functions o!

the observed values which are used to estimate the true values of the

pnraneteres. :'or example, if mi points from a sample are given, the

averagre or mcan value is estimated by

(1.11) * ., * x3  6 .+....... *

.h distribution of i7 bc;€omes closely concentrated about the true

SvaIue u1 as m becomes large,

9



There are riany ways to estimate the parameters under investigation,

and it is therefore necessary to specify certain properties which are

desired in estimators, For example, the distribution of the estimator

should be concentrated near the true par&neter value. If 91 and are

different estimators of Q with density functions fl(ol) and f2 (Q) as

shown in figure (9), then 2 is a better est5'nator of 0 than l,

The Density Fun6..ns of Two Estimators

F1gure 7

Other propartics which are desired In estimators are defined as follows:

1.3,1 Relative Efficiency. The relative efficiency of two estimators

is defined an a retio of the meansquare errors of the estima.

tore. That ia,.

.A 2(1.12) ( ) RF. where R.F. is the ratio function.

If ReF.( I, then 2 is sid to be a more efficient estimate

of 0 than 1i2

1.3.2 Unbiased Istimator. An estimator, t is said to be an unbiased

estimate of the parameter 0 if at) -0.

1.3.3 (onsistent Estimators An estimator I Is said to be a consistent

estimate of a if ?d-0 )O ),41 as M4e s

10
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1.3.4 Efficient 2stimator, The estimators which have the smallest

limitiaf variances are called efficient estimators of 9.

The estimators which will be used in the first part of this thesis are

shown in Table a.

Table a

Properties of the Estimators Used in W els I and I

Paramet er Es timator Proper ties.

ux, " Unbiased, efficient, and
-onsistents

m n= (xi - Unbiased, efficient and
X n Tconsistent*

A more detailed discusion of certain estimators under special

asswiptione is presented in Appendix .

1.4 'le 4'robl)m of Dependencc

In the gunnoryproblem, $he errors introduced in the line of a it

are due to variations in the rame and projectile initial velocity. The

error across the line of sight Is due to bearing errors. Since bearing

errore and range errors are independent of each other due to the fact

that they ae obtained from different sources, the mathematical assup.

tion is generally made that these errore ae also statistically indepen-

dent Hoever, if we broaden the perspective to look at tho major errors

introdued in a miseile trajectory, the major errors in the line of

sight and aoross the line of sight are probably not independent of

each other.

This Is primarily due to factors which did not especially influence

the gunnery fire control problem such as errors in ships navigational

11



posi=ion, errors introduced by missile attitude during the time of

powtred flight, especially at cutoff, and weather conditions over the

ta:get.

In the gunnery problea there are two types of navigational problems.

he first is the relative problem of firing fro-m a imving object to

another c:.ving target where the fire control problem is one of obtain-

inZ relative bearings, ranges, courses, and speeds. But the firing

shin's trie navigational position relative to the target is not an influ-

encing factor,

The second problem is one of shore bombardment where the ship's

navig.ationat position is determined by visual fix. This is closely

related to missile launching except that the first shot in shore bombard-

mont does not have to hit the target because the shore observer can tell

the ship *,>at spots to appl.' to the generating fire control solution.

arefore, this again becomes a relative fire control problem where

errors introduced by the ship's and target's relative positions are

corrected by spotting. This Is not practical in lon- range ,issile

launching because of the inability to obtain corrected visual naviga-

tional positions relative to the target due to lack of observers at thic

target area. Uhat is done instead is that the probable errors -vst !)C

predeterAined and enough missiles launched to ,ive a high probabiliLY

of destruction of Cie target co plex. If we assume tiat t!'e launching

ship is dctcrm..incd to be at the launch reference point then the errors

introduced are as shoun in figure (8'.

12
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Byrg f firing bearing from
ship to position target
will have at detonation.

True Target Bearing Diagram

Figure 8

3yrg is proportional to Lxong 3
Lyong

"yrg I is proportional to Lxong + LxonS
Lyong + Lyong

Since ByrC differs from rayrg , by the errors introduced in and

across the line of si!,ht, the errors are reflected in the q(USM)s inter.

polation co:mputer as errors in velocity to be gained, which have not been

ent,red. :ut the errors introduced are not independent because the In.

pt'.s influence channes in velocity to be gained in both range and cross

ran-u directions os shoini below:

13
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kuV~o -10,

to l

i fLchot 1wu veLx, y
f2 Ow M

Ky - LyoH to 4e.... M

?low Diagram oZ the Change ia Velocity to be Gained

Figure 9

In the gunnery problem, the weather coiditions over the firing

ship's position are the saie as the weather conditions over the target,

therefore these values can be accurately estimated. The missile firing

ship depends upon intelligence and weather forecasts to predict the

inputs for tarpet weather conditions. This infor.ation is thorefore not

as accurate as in the gunnery problem-. Since the errors introduced by

weather predictions Influence the missile trajectory over the target,

the re-entry 'ody is most likely to be :mved in any direction and the

probability that tho errors in and across the line of silght are inde-

pendent of each othcr is low.

'he errors introd:uced by missile attitude during cutoff can best

be illustrate by d vector eiagra
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I01 \ .

ki

S ,cut

"yv ."J

Vector Diagram of Velocities at cutoff

Fig ure 10

-, issile attitude at cutoff can be regarded as a random variable

b~2sc it can, assuue any attitude due to the Lact that the rcquirements

,o i,.iiae cutoff are due to past and present missile velocity and not

-o a predictcd velocity at some 4 t after cut.aff. Thus the errors Intro.

.,cx.: - ,in., the dt of cutoff will influence the errors in and across

line o- sig-,',,t in a random i-'ianner. 1'hereCore, the probability that

L:>, crrors in and across the line of sight are independent is again

e cocl.sion is that due to the complexity of the fire control

b I: n '"t errors in and across the line of sight are probably not

in, epmr,,,n. If !.m approach the problcm with this iss-mut.ption and find

t.,m ,:,.c Increase iN accurac; Zained by tis model is not sufficient to

..s , t icvcats in the mathematical Cifficultv, L, inCpcndent

Section cr, ha- : . to ceo -,m the environ::,-'nt o the problem

• 's. , !)aCsqu .tio :1a- is that the fall of

r



shot about the target is a random variable which obeys the bivarlate

normal probability laws. The assumption has been made that the errors

in and across the line of sight are not independent and one of the

objectives of this paper is to determine the effect of this assumption

on the CZP,

16



ZECTION II

'IIrNG '-: C P 'IF. I'Z DENSITY FUNCTION CZNTfEtD
Af ThE TARGET: NODZL I

2.1 Introduction

The most important assumption made in this model is that ux and uy

are zero, This means that the center of the bivariate density function

is at the target, Although this is the desired condition, it may not be

true initially due to the complexities of the fire control problem. One

of the determinations that is made from the analysis of the firing data

is whether a correction should be made to the fire control solution to

bring the distribution of the fall of shot over the target. Therefore,

by starting with the assumption that the center of the distribution is

at the target and finding that this assumption is wrong, it becomes

necessary to determine and apply the correction to the fire control solu.

tion. Also, it should be noted that although this assumption may not be

true initially, it still may be true after correcting the initial fire

control solution.

If the center of the distribution is close to the target, (0,0) in

the coordinate system, or suspected of being so by analysis of the test

data, the estimators determined from this model may be better estimators

than the estimators used in :odel II in Section III. A comparison can be

.1:ade between rmociel I and model II, using the criterion of relative effi-

cr':" o Ceterminc which model is theoretically the best. This criter.

ion is e'-plained in Section III,
.4

In this !,*del the errors in the x and y direction are assumed to

be non-nd .end-: .t and distributed In accordance with the bivariate

r rohability . The probaoility that a random point (XY) will lie

17



within a circle of radius kr7max is equal to

(2.1) (x y)dxdy-f_ 1T exp -!Z'AZdxdyn2
SX2-+Y-(kTmax X2 +Y2 < 1(7max

where Z and A are defined in (1.7).

In order to integrate over this form, It is necessary to first make

a transformation to an orthogonal density function. The reason for this

is that due to the assumption of non-independence ( #0), this density

function is oriented along non-orthogonal lines called the expected value

of X given Y and the expected value of Y given X or in simpler notation

1(XIY) and °E(YIX) as defined in Section 1.2.5. This orientation is

illustrated in figures lla and lib.

.//

ft/_' .. /

Lev)X axis$ .. .

Three Dimensional Diagram of Two Dimensional Diagram of the
the orientation of the 3ivari. Bivariate Density Function
ate Density Ninction where Pbrmed by a Plane Parallel to

0 f(4 1, a+b+c - 900 ,  the x,y Plane Qitting the
Density Functions

Figure Ila Figure lib
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.:UiS reri~i: ifa is shown to be valid byproving that

/ I N and 2J, whr A*-TV -. and

Y T+

1the transfonicd density function thus becomes

c9,v(u,v) - i exp . WA*w

1. exp

•2 o ,* 1 exp U\2 + v 2

.ac reoriented axes are not as shown $n figures 12a and 12b.

.// ".

Three Dim~ensional Diagram of .%m Dimiensional Dialgram of the

tlie IeorienLod Axes of the I"Woriented fivariate Density

'Wivariate '.ensity Function, Function Formed by a Plane
Pa~rallel to the u,v Plane Cu.tting
the Density Futnction,

Fignre 12a Figure 12b

2 *~~:~i~soE t c~ransfov.-atlon are contained in Appendix A.S.
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This transformed density function can be handled more easily

beciuse the terms involving the correlation coefficient have been re-

moved. The probability that a point (U,V) in the new coordinate system

will lie within a circle with center at the origin and radius k is

(2.5) P (kq V4,)- ,f~ (u,vr)dudv - (k,c)" 1 (eNp 7 2. u

where c - ., This form is simplified in Appendix C.5 to

J 4 + l)+(cl -. T)COS
0

The values of (k) for various values of P(k,c) and (c) are tabulated in

tables one and two. Table one is used by entering the table with

c - 2 in order to find k. This table can only be used for P(k,c)-.5.

Table two is used by entering the table with c - and the probability

P(k,c) in order to find k. This table can be used for various values

of P(k,c).

2.2 Estimatino the CEP using Model I

The first step is to find estimators forV'x,Vry and(O from the n

observed points (xl,Y This is done by computing

the sample vAriances 2,ry 2, the sample covarianceV'xy, and the sample

correlation coefficient wh rh are defined as fIlows

In these forilas, 'x, V'y, and 7x are unbiased est:imtes Of 7'x,7ry,

and U'xy.

20
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The transformed estimates of the variances are computed4next.

Tabie two, is entered with P(k,c) - .5 and c - to find k.

The estinmate of the CEP - CE?1 - V'

2.3 istimating thie CE? using the Assumption that the Errors in the

x and y Directions are Independent.

If[ it has been assumed that the errors in the x and y directions

are independent, an estimate of the CE? can be obtained by using the

estimators in model I except that the estimated variances Vi. and 7 "

are usdinstead of the estimated trnfrmdvriance 7 an

Smin where 7min * in(x,Vy)

P((*,c*) = .5

Table two is entered with P(k*,c*) and c in order to find k*.

Then this estimate of the CE? - CEP - k* r" max.

2.4 Information About the Problems.

In the problems which follow, both etimtes of the CEP will be

obtained in order to compare the results in the suxray in Section VI

2.5 Exarmple Problems

TChe problems, which will be used to compare methods of estimatitig

t.he cE.P, have been set up in three cases. The first case will have ten

sample points (xly 1) .......... (X1oy o) and is representative of the

poinmt in time merc Ioex initial decision maty be made as o whether the
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+sluld bue accepterl, rejected, or that more tests should be

o,0fliuctu(I. 2-e second Case will have fifteen sample points (xl,y

.(x5 ~,, ) hich will include the first ten sample points. This is
L15

int,n'ef_ to represont an intermnediate point in time where some terminal

i,.sion iav bc ; aaie on the acceptance of the weapon system, The third

cas,. vill consis: of twenty five sample points (xl,yl)........(x25,Y25).

it shoued be noted that as the number of observations increase, the

esmi,2atorz Are :ore likely to be closer to the true values. £he actual

OistiVLion4 of the 25 points are shown in diagrams 1,2, and 3. The

coordinates oZ the points are as follows:

aroblcni I Problem 11 Problem III Case
x y x y x y

1. -3.) -1.0 -5.3 8.6 -3.6 -ii.8 I
2. -2.2 5.f) -2.6 1.6 -3.6 3.23* -leO) 1') 0 1.0 -1.6 ' 2

4. - ,L - ,' 1.3 1.0 .3. .U
5, 3.0 -1,6 -1,0 1,2 -2.2

. 3. 20 .3:0 -1, 0 - 1.2
7, 3*6 2 M - .6 14r 4.2
3. 3.0 1,0 - 4 -2,4 .4 1.6

. 3.2 4,3 -1.0 -4.0 1.8 4

iIl 0 .Io -3.4 3.0 -2.6 - 3.6
l?.1 1.4 .O 0 2.8 i6 - .6
13. .4 -4.0 1 2.6 -1.3 .4 .2 II
14.1 2.6 3.0 .2 -7.0 1 .1.8 1.4

i , .k 2.6 0 ,4
i 22 .,0 .... .0 .4.0
17, -2.0 2.* -6,0 2,0
v. .1.9 2.1 -5.i 2, -290 -2,0

1 i ,1, -1,4 -1.0 "1,O21. . . -- 6 0,

21 1.1 ,: ,I4 1.4 3.0
I4 l, -1.0 -. .4 .6

• "3a 2,4 2,0 .3, -5.0 1
24. 1.. 2.,- 2.2 5. 1.4 1$ 0 \

3,J 2



The value of the CV obtained using the estimtors from this

section will be compared to the estimates of the CEP from Sections Ill,

IV, and estimators which are explained in Appendix B. This comparison

will extend to the problem of rejecting outliers and the comparison

will be presented In Section VI.

Althouph these problems are primarily oriented at tests involving

the more expensive weapon systems, such as the IR3Z, the environment

cam be extended to less expensive weapon systams which viii naturally

have more sample points. Although It was Intended to make the problems

as realistic as possible, no attempt was made to utilize data from

actural missilo firings.

23
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1r~r 1*. , .ase I. Data points and computational results.

.. . . . . 4 v y z ,

e -

#A

,0% X, A,

= ,.3

;sDependent Independent
-N * V bdel iodel

Data Points in Problem I, N-10 r

Diagram 
4

Problem 1, CAse I. Data points ard computational results

6 . . .3'

D~,/f o ndependen

Da? 7 1oi' O tI 1 1,1 0

Au Probla 7-z3

Di iarm t



!,cv'blem I, Case III. Oata points and computational results.

V, 7, 7? _, 7e

AA

® C=  . .6l' 7 .3
6

I "Deendt Independent,6

,,'ded. ..

)ata 1oints in P~roble:i I, N-IO

.7 axis7 Dependent Independenit

7=4t Points in Problem, I., N210N . .

2;.E 0 R 3



Problen II, ase II. ata points and computational results.

J ~6- S_'de 7_,,xe_ .

C 117 - 3,71

DOoAlo ,Dependent Independent

d) CE,- .44f > maI~3S

Data po ints in Problem Us N1

Diagram 8

Problem I1, CaIe 111, Dota points and computational results.

® ' y= :/1, 7/ :yxt;

I Dependent Independent

C .

D~ lo=tuis in rroblow 11, 2S

Dtaf~?R:." 9

29
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!roblem III, Case I. Data points and computational results.

-g' -', ai -j':- fT77

p ^

-a

Dependent Independent

, ~~-O -,---N0 Io

Data Points in Problem 1II, N-1O

Diagram 10

Problem I, Case I, Data points and computational results.

4 - A

Dependent Independent

C, ', rr

Data Points in Problem 1119 N15

Diaram 11
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Problem III, Case III* Data points and computational results,

rd)~ 

n/ 104

AxilrO 

~ V. D1?
1sy 4 7 9 y' 0

Dependent Independent

#,v *?4 C 9S

Data Points 1A Problem 1119 1425

Diagram 12
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SECTION III

DETCE12LI4ING TI{. CEP WIEN TIUL DENSITY FUINCTION IS CZTNERED
AT THE POINT (u ,u )" :MDEL II

3.1 Introduction

The most important assumption made in model II is that if an

infinite number of tests were conducted, the mean values of x and y

would be u and u respectively. This means that the center of thex y

bivariate nor.al density function is at some point (ux,U,) with respect

to the target at (0,0).

If enough tests have been conducted to ascertain that this density

function is offset from the target through the utilization of the esti-

mators, then it may be possible to enter a spot (-u ,.u ) to correct
y

the fall of shot.

In this model the errors in the x and y directions are assumed to

be non-independent but are distributed it. ziccordance with the bivariate

normal probability laws.

The probability that a point (x,y) whose coordinates are chosen

at randon will lie within a circle of radius k7*max with center at

(u ,u ) is equal to
x y

(2.1) 1 LAX u. 7+(y7y2~ k wmax],ui f~f,,(x,y)4xdy

x y

I eJxp (- Z VA;"xdy

+ (y k -u,) 2
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In oWcr to integrate over this form, it is necessary to first

translate t'e axes before maing the transformation because the density

function is oriented along ion-orthogonal lines away from the center of

x,y coordinate system. This orientation is shotm in figures 13a and

13b.

Thiree D imensional Density Function with Center at(Ux,uy where 0< P4 I

• Figure 13a

7 /

N_.-unto wit Cntr t u, I
:hc imni nDestFunction with center at (U U ') whr O(P

x y

Figure 13b
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2ke translation is madc by subtracting the means (Ux U) from their

respective random variable X and ':. That is simply (X -ux) and (Y • u )Y

vwhere in this case the natrixZ now becomes Z = " !

(Y " y

-he transforma~ion is then of the same form as the one in Section II.

3.2 Estimating the C P Using .del II

The first step is to find estimators for u,,u y, Vx y, and P from

the n observed points (x 1,Yl)(x 2 ,y 2 )........(X nY n). This is done by

first computing the sample means i;y and then computing the sample

varlmices V x the sample covariance Vxyand the sample correlation

coefficient ( as follows: .x i
nn

^2. -" x) 2  y . Y)22

x n-1 - n-I

n-1 VI

The transformed estimates of the variances are then computed using

fonmulas (2.6). Table I or 2 is entered with P(k,c) - .5 and

c - Tv to find k. The estimate of the cur - ar 2 - k* u

3.3 2stititing the CUP Using the Assumptioa T at the Errors in the

x and y ".Zrections Are Independent.

If It >as been assuncd that the errors in the x and y directions

are independent, an estimate of the CaP can be obtained by usinS the

estimators In rodel II ex cpt that t:o estimated variances '2 andV 2
y



are used instead of the estimatcd transformed variances T and V .

I:ien c* - A'__n where A' ,.

,able 1 or 2 is entered with P(k*,c*) and c* in order to find k*.

-A
Then the estimate of the CEP is CEP*2  k*V' max

3.4 Comparison of 'bdels I and II

If ibdel I is the true situation, then the estimator defined in

Section II is the most efficient estimator. If the mean is not at (0,0),

(.-del II) then it still may be advantageous to use the estimate given

for %odel I if (uxuy) is not too far away from the origin and if the

sample size is miall. This is because tv. degrees of freedom are lost

in estimating (u,,uy). This problem is treated in Appendix B using the

criterion of relative efficiency.

3.5 Problem Set

Problem 1, Case I

)a.0
A'

7 J. 7
-I- --..., .O o $,1 v -

" Dependent Independent

Data 'oints in 'Fobl.,: I, 1-10 ' -

riagrm 13
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Froble.u I, Case II.

--7V'y-/] ' 'y 1 .j,9

A
. y..6 y, rr V=, v

I -'

(i) ~~" Depenuent Independent
Ibodel ,bdel

Data Points in Problem I, N-15 CE- .

Diagram 14

Problem I, Case III.
"-" "ii -2. &' ' ® 'I&f ,

Gv a

m % - I'. V': ./

009
z ?.7 74~

Deipendent Indepeandent;

Data utas tI ProLlenr 11, X-25
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Problem II, Case I

-'x yf -2 = -57

/ ~ VA~i4/ 74

dAI- I [Dependent- Independent

Data Points in Problem II, N-10 Ci71# ,.-3 CE... -3.".f

Dia-ram 16

Problem I, Case II

4 fy
x "r -,9

X 4*S *Q /Dependent IIndependent

Data oLints In Problem 1I, N=I5

17
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Prcbe: . 11 Case III

\7x

l T

G) 0 -2 Dependent Independent

-1 C=.07 CS Za a

Data Points in Problem I, N-25 CE '3 Cft Y7

Diagram 18

Problem III, Case I
-s~ -' , .-, -2 a : - 6 Y" = -

a

-" DPeeqdnt Idenden-
Hdel

CEO, 1. / :/097

Oats Points in Problem Ill$ !1-10

ta.ram 19
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Problem' III, Case II

-2 4

G) \ I /~0.7 &:~
x ~6 7x, 3 ,.. ,-,1

X &;(w -... ..Y 4 F=,/,L. P 903

vv- b~a Iv

Dependent Independent

' -,,0 /<' : ,*7/,- k":' - h, 07?

07

Data Points in Problem I1I, N-15 3,a S7(

Diagram 20

Problem II, Case III

9LS -
-?, -. , -v -a~ i =," -t

0 aAS4 9 x

® ', s g~7',,o -,

C~i; 1) .6

4).> Dependent Independent

-, L hdal- I d

IC c=.,:,a lC'" V3',,.Z ,

Data 1oints in Yoblem lII, 1-4.

9
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. CTION IV

rU"OVING T IE OTLI R :ODL III

This model covers the problem of outliers and attempts to show

some of the reasons for eliminating the outliers from consti.ration in

the determination of the estimates as well as several methods for

eliminating them.

4.1 Introduction to the rroblem.

The general problem of removing outliers is related to the fact

that it is desirable to obtain estimates of the parameters for the

underlying bivariate density function which are not biased by obser-

vations from a distribution different from this underlying distribu-

tion. his in turn will yield more accurate estimates of the CEP.

It is necessary to safeguard the estimate of the CEP from the ill

effect of including information in the analysis that Is not due to

variations in the population of missiles, but is caused by some other

factors such as weather or human errors. It is also possible that

observations which have large deviations from,the other observations
/

.ay come from different distributions due t4 improvement in the/
missile design. This is especially tru/during the missile develop-

ment stages uhlere each succeeding missile has improved or different

subsystem components than preceeding missiles. For example, an im-

proved fuel may not be correctly compensated "or in the missile Ouid-

ance and fire control computers or a new type switch may noL function

quite as initially dcsigned. Thu combination of'changos may Influence

the ra',Q ot the rissile so that it h,.&ds farther Cro.m the target than

qredicte4. If coi.nsation is correcLly :rzde for thc succeeding shot,

40



it secs reasonable that the observation for the first shot should not

be included in the determination of estimates for the C3P.

Also, as improved subsystems are added to the missile, it is

possible that the earlier missiles will not have the same density

function as the later missiles and thus have a different CH.P. In this

case, it may become necessary to include only the later developed

.issiles in the determination of the CEP. Due to the fact that the

missile development will be a continuing process with each missile

slightly different than the preceeding one, it may not be easy to dis-

tinguish between these distributions. This is because both distribu-

tions will have some observations close to the target and others away

from the target. The figures below may help to illustrate this point.

/ ".

i/\
. /xx \

0

Observations from 'No Density Rinctions of Two
Distributions about the Target Distributions about the TIarget

1.irst population
0 second population

Figure 14a ?igure 14b
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Isthould be noted in figure 14b tla-&-t-istributton I has sone

Prooability o$ occuring in distribution II. If this probability is

larg'e, it may be extremely difficult to separate the tu. distributions.

In fact, if it is desired to separate the tw distributions, there is

some probability that observations belonging to the underlying distri-

bution under consideration will be removed along with the observations

from the distribution that is not being considered. Thus one of the

problems in removing outliers is to keep the probability, that the

observations removed as outliers which do in fact belong to the under-

lying distribution, as low as possible. If this probability is small,

it is possible that the observations belonging to the underlying dis-

tribution which are still removed will have such a low probability of

occurence that their removal will still lead to a better estimate of the

parameters. This may be especially true for small sample -sizes where

one sufficiently large or s mall observation can totally ruin an analysis

of the data. Therefore, in order to eliminate an arbitrary result, it

is necessary to establish some criteria for eliminating these outlying

observations.

4.2 Criteria for Rejection of Outliers

Naturally shots which land at long distances from the target can

le easily identified as wild shots or outliers with possible unknowm

errors. 3ut as the observations move closer to the target, it becomes

necessary to utilize some type of probabalistic consideration for tea

rejection of outlyinn observations. One way to approach a solution to

this problen is to set it up as a hypothesis testing problem. On the

basis a- :',' ublrvations )n Yn) , a test is m ade of

42
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the hypothesis that the observed point (xi,y1 ) belongs to the underlying

distribution. The test is then conducted for each (xi,yj) for I - 1,2,

S......n, one at a time. The alternate hypothesis is then that the

observed point (xiYj) does not belong to the underlying distribution

but to some different distribution. This can be written as:

Ho: fx,y(xi,yi) fXoYo(xi,Yi) for each I l,.....n,

Y 0 (x where: f i0 (x1  )i hf" fy(XiYi) f Xo o(iYi) whre '. (i i ) is the

true underlying distribution.

The probability of a Type I error will be called v where v is tha

probability of rejeczing the hypothesis that the point (x1,yi) ,Oes

belong to the underlying distribution when in fact it does belong to the

underlying distribution. This can be expressed as

Prob EType I error] - v

The probability of accepting the hypothesis that some point (x1 ,yi) does

belong to the underlying distribution when the point does not belong to

the underlying distribution and is called the Probability of a Type II

error,

Thus the probability of the Type I error may be called the risk

that the experimenter is willine to take in making a mistake by rejecting

a point (xiy i) as an outlier which does in fact belong to the under.

lying distribution even though the observed value does exceed some value

specified by the criteria. Naturally, it is desirable to try to keep v

small but if v Is too small then the Type 11 error will increase and all

outliers will be included in the determination of the parameters.
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4.3 :;thod I For the Rejection of Outliers.

Zhis method for the rejection of outliers is based on the probability

that a random point (X,Y) will lie within the ellipse Z'AZ - k. Z'AZ is

the matrix notation for the quadratic form of the dependent bivariate

normally distributed random variables X and Y. That is,

(4.1) Z'AZ =1 tx-ux) 2 ("-a y2)+ IJ- 2] and

k is defined by

(4.2) P ( Z' AZ <( k2)- ff. .,(x,y)4xdy-l-v
7'AZ<k 2

Geometrically it Is the probability that the point (X,Y) will lie

inside the ellipse made by a plane parallel to the x,y axes cutting the

density function as shounn in figure 15.

/ ,

x AXIS
/

Offset Z'llipsc :ade by a Plano Parallel to x,y Axes
Ottins the Density Function

Figure 15

Due to the orientation of this density function, it is necessary to

..ke the transformation to the orthogonal uiv coordinate system in order

to interate over tiis for.., :his tronsfor.mAtion is nzde in the same
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manner as in Sections II and III. The probability can now be expressed

as
'4.3) P(WO.IA*,:<k )u (u v)dudv  exp(hW1A*%)dudv

W'A t A*WcK

where U - u2 + v2

letting T2  V2  (4.3) reduces to

(4.4) P(T2 < k2 )k / exp(-ht) dt 3

The random variable T has the Chi Squared distribution with two degrees

of freedom. The above formula is a special case of the following result.

If are independent and normally distributed random variables with

means ui and variances , then

(4.5) T - D /~-_ui'

11-e decrees of freedom m is the number of Independent terms in the sum.

The density function of T. is

e x-1) a)

0 t!(0

The areas under this density function are partially tabulated in Table 4.

The desired percentasge of the area under this curve is found by enterxng

Table 4 with I - v and the degrees of freedom m.

Te decizion rule that is used for the elimination of outliers is

to state that an observation is an outlier when

3 "t,, :ion To at eo. oC St,-tistic," by A. i:. .;ood /2/ of
f.l.nd !'.:r ort ion.



£1

(4.7) k2 < - $ - Z.A Z Z

4.4 I.:ethod II Pbr the Rejection Of Outliers.

"his rethod for the rejection of outliers is based on the probability

that a random point (XY) will lie within a circle of radius k max .

Then, letting

r - (x - ux) 2 + (y - U ,)2J. k is defined by

(4.8) P [(x - ux) 2 + (Y - uy) 2 <ktV'm ff,y(x,y)dxdy= 1-v

Geometrically, it is the probability that the random point (XY) will

lie inside the circle imposed on the quadratic form made by a plane

parallel to the x,y axes which cuts the density function as shown in

Figure 16.
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Illustration Showing the Circle oC Interest
which is Imposed on the Ellipse Lade by a llane

Parallel to the x,y Plane C.tting the Density Function

Figure 16

Due to the orientation of this density function, it is also neces-

sary to make the transformition to the orthogonal u,v coordinate system.

The geometrical areas under consideration are shown below in figure 17

for this transforz.-.ed density function.

/. . ... . --.

IU

Illustration Showing the Circle of Interest
which is Imposed on the 21lipse -*edo by a Plane
Parallel to the u,v Plane Oattine the .ensity Function

Figure 17
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I: ,z'y.,,' b: nota; thot this : wethoc will reject points outside the

cicle 'nt iii:;-c. the ellipse which is estimated from the data points.

hcireforc, unless the variances are equal, this method will generally

reject points rarther fro, the target than ncthod I, since soe points

on or near the major axis will be outside the circle as shown in

figure 17. 'he circle is necessarily o smaller diameter than the

major axis of the ellipse unless the variances are equal and then the

circle and ellipse will be synonorous. This can be seen from the follow-

ing inequality:

+? ,2 2 2 2 2
(4.9) + y X where x = max(Vx 2 ' V.-2)

The probability that the point (U,V) in the transformed coordinate

systei will Iie within the circle + V2 - kVy is expressed as

(4.10) laj 2+v2. k- j 1-V ff%,(u,v) dudv F (k,c) wkiere c-

This forrula is the same general formula that was used for the determln-

ation of the CEP except that .5 has now been replaced by (l-V) in the

range from .5 -P 1. The decision rule that is used for the elimination

of outliers is to state that an observation is an outlier when

(4.11) -.tA*u1, W Z'AZ )Pk2 where k2 is obtained from table 2 by enterinE
ii 22

with I-V and the value c- O'v . It should be noted that this value

of k defines the radius of the circle centered at (ux,uy) which includes

(I* V)10. o.- the bivariate probability mass. The value of k obtained

fron. method I defines the ellipse which includes (I-V)100 of the

bivariate prohability nass.
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5 roce(:rc. f it e.,eovn-, Outliers "sin- ethod I or ,ethod i.

-, aruce:-:re to re',.,vc the outliers differs from the CIs-

,: ::,: in ,c¢ions L.3 and 4.4 in that LhC !-robobility 1-Vis only

").act if tl., true val.es of the para:.eters uU, 7 ' q.; and y are
y ty

used I: should be noted that both procedures substitute estimates of

these para,eters for the true values and therefore the probability of

.ype i error is not exactly equal to V . 'he first step is to find

estLiators for uX,,U, x  ande from the n observed points (xiY)...

.... (xny1). This can be done using either model I or model II from

=ections II and III respectively. The model used depends on which basic

ass-!:iption Is made about the true values of the means (u,.uy). If it

is assumed that ux-uy-0, then model I can be used. If it is assumned

that u A 0, and/or u 40, then model II can be used. Also, the criterion

of rclative efficiency can be used to determine whether model I or

-. d 1 I should be used. The estimates of the parameters
A a A 3 ~

, , v, are then computed by using the selected madel.

.he estimated value of the matrix A is computed next using the above

est imates.

(4.12) ,,-1)

,.or.ally the valueVis predeterminee by the experimenter and the

outlier rejeced on..the basis of this value. It is advisable to delete

the o !tliars one at a time until all of the data points are inside the

region prescribed by the probability "-Vand the -,mthod used, This is

Cue te tc fact that th.- estiated shape o! t1hc c,,rvo is dependent -upon

C',e . oa ints and cach 4Iccte," po9nt will produce so:me change in the
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A .: siape u.' *,. :cnsi-y .'Xnctlon. .ii first outlir is rexvcd

by invcsti-tin- ':e pcp±ols farthest from the es:i:Iate._ ,an value

ane the point (xi,9 ;) is deleted whose estimated quadratic form L'V

is greater than kt2 (for method I) or k2 (for method II). If there

ale t.:o or more points uhich satisfy this requirement, the point is

deleted first which has the greatest valued quadratic form.

It is then necessary to recompute the estimators and use the above

procedures again, thus removing outliers one at a time, until there are

no points !eft with estimated quadratic forms greaier than k2 (i-lor2).

The final estimate of the '.P is then determined from the estimators

derived using the data from the remaining observations. This estimate

of the CEP will be referred to as r2i where the subscript i refers

to the number of data points removed.

4.6 Inforrmation About the Problems.

In order to illustrate the above methods, the sample problems given

in 3ection 2.5 were used. .bdel II was chosen arbitrarily for estima-

tin- the parameters for illustrative purposes. Both methods of reject-

ing outliers were set up for each problem case but instead of rejecting

outliers uith any specific probability, the tables were set up to show

the probability that a specific data point cculd be rejected. This was

done in order to compare the two methods.
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iroble:,. I, Case I. "i.ta points and computational results.

* Step 1. In ordcr to reduce co-puta-

tion, it is only necessary to find the

i maximu values of Zl'z i in each of thc

-, 0 steps In removing the outliers.

A A ACI Z0AZ =5.270 ZAZ -3.32, Z'AZ -3.31
-11 10 10 2 21

1 . I-V .ethod 1 Lethc 2i

•.0 4.61

. 5..,4.5

.... ...... ....... ..... )75 i • 7. 33 5.65

Dat Ioints in Problemn I, i',-0

T, iagrai 22
D ,,. r .,

Conclusion: . L_ for point 10 is greatest and can be removed with

-0- probability by Method 1 and 9% probability by Method.2.

::e rcco-.., ter,' estiniators, after deleting point 10 are then
'R r 2 . A-A yS- . , . 1.2, - 2 .4 4 ,Vy- 2.33, xy- .41, e - .06, V. 2.9,7- 2.4

Dependent Independent

iodel odci

c - .31 c* -

k =1.05 k* 1.05

CEP2 1-3.1 ¢.?* 21=2,

;tep 2. :,le procedure should now be continued with the 9 re:ining data

points to determino if any of the rermaininp data points can be removed
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%:ith i spcci .7i poailit, c. 9W'. ,sin- u;cthod 1 or 5'.. probability

'isin, ;vt'c! 2. In !I's probl-;: thc:ra are no more ouliurs.

*:"'obl.. 1, Case T, .'ata points an.t computational results.

® tep I.

Z11^AZ 5.04 01Az 740 50 1

l-v Metohod 1 :.ethod 2

3 5 . . 4,-33

.-,75 7.33 6.10

,21 7,76

Data Points in Probler 1, 15

Dia-ram 23

Onclusloa VA." or data point 15 Is greatest and can be re.noved

ith '7.57 probability by Method I an Method 2.

The rucouiputec' estimatore af tar deletino point 15 are then
AA A

I 1., 1 .C 1) 2. 62, 9 3 44. U345~ a 3.639 F a 2.26,

p 1 33I
oapcndant Independent
; iodcl '0, .I 1

* " .632 0V m .762

k a 1-54 1.*-.O~lq

a .3.1 " 35
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tep 2. .-he procedure is now continued with the 14 reninininz data

points to determine If any Z the remaining points can be removed with

a specifieod probability of .
"3' A: iI .. iothod 1 .:ethod 2j

10 519n 4,41 I

-L5 7.38 5.54

Conclusions Z'AL for data point 10 is the largest and can be removed

with 95% probability by method 2 but would not be

reroved as an outlier by mothod 1, For purposes of illustration, this

data point will be ri.novd. The recomputed estimators after removing

point 13 are

A
-. ),q~ 1.7, 70- 2.470~ 2.71, %u l 2.79$W 1. 37,e 16

,opendent Independcn t
:;odel Model

C U,9 *35 ,1 ~

C, k=3.04 2*

3tep 3. The procedure In &gain continued with the 13 remaining data

points to datermine I any of the remainin.- points can be removed with

a apocified probability of '0Z. In thie example there are no morc outlicrs.
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:robleni I!, Case I. .)ata points and computational results
A

.1 Step 10 z '. 1 CO

.41

i-V ethod 1 .iethod 2

.95 5. 9 -

1.975 7.38 5.22

L

-6.-/ ", 0 a y

Data Points in Problem. 19 ,-10

Diagram 24

OncluSion8 Z0Rz for point 1 ii roatest and can be removed with

'5% probability by oMto I and 97,% probability by mothod 2.

0io rcoonputokl eati nator after doletina point I are

6451 -49 2el~sy loG2$ 79,f. a.201, o2.3

"u 1,72

Dependent Independent
:odel Model

e - .770 I*U.,tfA

k -1.039 k*-.0ot

C31 21

'top 2o The procedure, using tho .remaining points, does not reject

any more data points in thin problo..,
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,.: >1, &uose I. .ac- points and computational results.
IA

"step I. 'A2- 7.33

' .ethod 1 .:ethod 2'
I A

05 5.99

975 7.,  "

.990 -7.07

" .995 8.30 1

Jaa I 'oints in I'oblem Ii, 1l-15

1liaoram 25

Conclusion: Z-Az for point I is greatest ante, can be removed with

951 probability by mthod I and go probability by motAmd 2.

The recorputed estimators after deleting point 1 et'e

... , .. ,7$ . 2.1, .2.16, 0% .. 2,(...o, ,- 2.V,;- 2.15

Dependent Independent

c - .CS3 c*= .9O0

k -1.076 k*.0,?

w2.90 C..a*
"21 21

3 tep 2. The procedtre usina the 14 rcmt'inon points does not reject

any :,iro data points.
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-1-v i i. thod I 'I thod 2

5 7  7,3- 5.33

Dnrm 26

Cone1,-ion:. -4'%A7 Eor Poin~t I ts -r~aLc-Su6 ind can be r2-QV with

)rot zbilit.;. by mthod 1 and 97-5% probability by method 2.

.1n re.rc,~ (zsti.,ato, n ter delctln poi .1 arec

-. 3, 7 tL- 213,1 - 2.1c, P". .30 %),71A .097V' 2.09

iC))ufldent Independent

1~ ~6



, ase an . points a:i. co:-.i)'..ational results, 0

-'IV )r 10 10

I-V I:ethod 1 i,:ethod 2

K.7 .f.,5 7.32

" C 6, 12

:d'a:z A'oinitc ii 'roAc. 1l1, 4-15

5taera- 27

Crnclustolll z,.Z for poir I Is ,rcatast and can bc renvcC' with

.,reatcr then 97.5'.'. probability :or both mettoiJ, Also, Point 10 can

be rermvod with 95t probobility by uthod I M "% probabillty

by Metwo Be In this prob)1uit

!th points wur( r4.:xva0 in Ohit stc).

'h reco...,putud itis,.tators after Jelctin, points 1 and 10 are
A A 0%A

" -. ,. ,V- *0,75.7.u,e. .o7,W- 2.216'%- 1.3)

Depcnount Inepantlen t

= *. 0 6

"t,"intz, doe% not reject any
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SECL IVON V

THE (DNFIDMNCC IT2,1VAL O ECEP

5.1 Introduction

The previously introduced estimates of the CEP are all called

point estimates where the estimate of the CEP was defined by the locus

of a point moving at a constant distance (the radius) from a fixed

point (called the mean or(uxtUy)). This constant distance or radius

is called the CIP. The confidence interval of the CEP attempts to

-ive some measure of the possible error in the estimate of the CEP.

The confidence is defined as the probability that the true value of

the CEP lies in an interval between L, and L2 where L and L2 are

f unctions of the random observations (X ii), i - 1,2,.....n. This ex-

pression in probability notation is

This interval estimpte Is a function of the confidence required, the

number of observations, and the estimate of the standard deviation usec,

5.2 Obtaining the Interval Estimate

In order to avoid lennthy computation in obtaining the interval

estimate, it is assumed that the variances are equal. That Is

the CCZ ucs defined in Saction 1.3 as being equal to k V7whore the

value k is a function of the ratio of the variances and the probability

that the man cantared circle contains 50% of the bivariate density mass.

See Sac.ion 2.1
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Since the variances are assumed to be equal, the ratio of the variances

is 1, and I?(kl) - .5, so that k - 1.1774 (from Table I with c a I).

Although the variances are assumed to be equal, the estimates of the

variances are not necessarily equal,

The estimate of the standard deviation will be determined by the follow-

ing two methods.

5,21 Determining the Confidence Interval, Method 1

In this metboaC m 2 2) will be selected to represent

That is

(5.2) t t -2) o max 2 a 2 7

If 7 i divided by the true value of the parameter and multiplied by

n.l, this formula becomes

Although the sum in (5.3) will not be an exact chi squared random vari.

able because it i the maximum of two chi squared random variables% an

approximate confidence interval can be obtained by treating (5.3) as

though it were a ohi squared random variable,5

The confidence interval defined by (5.1) thus become

I? CE" 1< 7(; -t

5 See Section 4.3.



eI
.'he values of and a re obtained by entering

table 4 with n-1 and either 1.*(2 or W2 respectively.

5.2.2 Determining the Confidence Interval, Eethod 2.

The estiniate of the variance in this method is the average of the

two estimates. That is

^ 5 ';L- . A x "A_
" .-7 Vy- (,"-i)

N -1 a-l -

If (5.5) is divided by the true value o. the parameter .2 and multiplied

dby 2(n-l), the foraula becomes

a T

where r. and y, are normally and independently distributed and x and y

are the sample moans. This !ormula can be reduced by letting the values

of I rane Crom 1 to n and the values of j ranae from n + I to 2n. Then

the formula becomes

tere z k " et k 1 l...ooooon and k It for k - n + l,.,....2n ane

t.'-re are 2(nwl) squarec In the sum. ' Tus (5.7) has aX; distribution

.;ith 2(nl) dogrees of freedom by the definition Civan in (4.5). The

Interval estimate is determined in the same way as in (5.4) and the

fomula boconat
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*C ~~1v(S oJ~(, 0 4  aiciare obtained by entering

:alc !; ',ith 2'n-1) and eithler 1-o('2 or X/2 respectively. It. should

be noted that this methoc of Interval cstimation is not as conserva.

tive as method 1 because the average value is always less than the

~ ."of( g her-fore, this interval estimate will be smaller.

5.3 Illustration

The estimates of the confi.encc interval of the CEP used in the

follotuIng illustrations were obtained with the data from Section 3

and (-1.t, - .95. A comparison is made between method I and method 2

c :sell as a variation o! the tw riethods ;hcre the dclca:ina_ .-stiiote

of the C..'P 1- * ZI') -as substituted for 1.1774TE. It shoulV be

hci.ip Kthat none of the distribution theory used in Xethod 2 holds

-I2en Is used for k T hercCorc, it is hard to get a Llottc-

;..aticL11y ,c^-nIn;ul conparison bex'cen these methods.

AblQ h sho!.:s Uto various csti:-iates of thc C,. The best estintate

o:. the C41 is r,*st Ilely to be C41'2 ,uc to the basic assumptions of

depcndence and unequal variances. 'tho cstimate of 1.1774 TM is Clio
rmax

largest estitwte o: th'e UP and therefore the nost conservative estitmte

of the C:P.
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AA A1 umber of
"r0 1.17 741 Observa-tions

cs1 2 .34 3.72 3.64 10
Case 2 4.34 3j 3,37 15
Casc 3 3.45 3.26 3.28 25

2

Casc 1 4.05 3.57 3.33 10
Case 2 4.15 3.53 . 1

2ase - 4.11 3.74 3.71 25

3

Case 1 5.42 5.00 4.66 10
Case . 4.6Q 4.21 3.56 15
Case 3. 3.73 3.52 25

Tahles c and cT so' the upper ane lover bounds of the confidence

interval estimatcs.

Table c

L1 (:1.."' , "" . "Yn) = Lomer 7ound of the Confidence interval Estimate

Problem ::ethoc I Nethod 2

2 .74 UP~- 1.174q-,12- 'CE fi(n;I ~.1, 0', ,L [r.

Case I 2.65 2.51 2.82 2.76
Case 2 3.1' 2.32 3.03 3.07

Case 3 2.70 2.56 2.72 2.74

2

Cac 1 2 .CC 2.30 2.70 2.52
Case 2 2.03 2.47 2.80 2,6'
Case 3 3.22 2.90 3.12 3.10

3I
Case 1 2 ".74 3.22 3.73 3.53
Case 2 3.36 1 2. .0O 3.35 2.33
Case 3 13.00 2.75 3.11 .94
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-Table d

L I .**y -pper Bounds of the Confidence Interval Zstimate

12

::ethod 1 _______ .ethod 2 ________

_as 2 -a____2

,asa 1 7.00 6.65 5.43 5.36
,. s0e 2, ISO .10 5.12 5.10
Case 3 4.30 4.56 4.16 4.20

2
Case 1 7.40 6.10 5.26 '4.90
Case 2 6.53 5.34 4.73 4.60
Case 3 5.73 5.16 4.73 4.75

3

Case 1 I.20 ,.50 7.35 ".36
Case 2 7.24 5.60 5.70 14.S2
Case 3 5.35 4.20 4.76 i4.50

It is notedl that the louer bound esti,-ates are for all practical purposes

the saa for 1oth methods, with the average difference being only .01.

!Eowuver, t,-e upper bound differences show that method 1 gives a greater

cstinzate with the average difference being 1.59. The lengths of the

cn.ildence intervals are comared in Table e below.

Table e

Length of the Confidence Interval (Upper bound - Lower bound) .....

"~i h Tz 1-2 _ 1ith cq62 1-2

Problem '.Lctiod 1 :.ehod 2 Difference :.e tid I :.ethod 2 Difference

I
Case 1 ,'.35 2.-6 1.'9 4.14 2.6) 1.54
Case 2 3.V5 2.04 1.51 3.23 2,03 1,25
Case 3 2.1.  1.44 .5 2.00 1.46 .54

2
CcSe 1 4.60 2.55 2.05 3.30 2.33 1.42
.:ase 2 3.50 2.00 1.50 2. 7 1.91 .6
Csc 3 2.51 I.L.I .5 2.25 1.55 .51

Cns , 1 21. 3.., 2.53 5.2, 3.33 1.5
,RLn 2 2.,L 2.3. 1.53 11.00 1.911 1.01
Case 3 j .3 1.. . .. ,5 .9

Avorane differce 1.46- .. 10
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It should be noted that the confidence interval becomes smaller as th;

number of observations increase. This implies that the true value o7

the C-P is nre likely to be within a smaller interval as the number of

observations increase.

Diagrams 28,29 and 30 show the confidence interval using the

eifferent estirates. The confidence intervals .ere obtained by using

the data froni case III of each of the problems.

5.4 Conclusions

.ethod 1, usin- 1.17747m x produces the largest estimates ari

therefore is the most conservative estimate of the confidence interval.

:owever, CZF2 and 1.17747avg are likely to be better estimates of the

CE and therefore method 2 or the approximate interval using the depen.

dent estimate CZI'2 may be the best method for estimating the confidence

interval* 24 analysis of actual missile data should give a more realis-

tic insight into the best choice of methods to use in estimating the

co".idience interval. In order to come to any definite conclusions about

the different methods, some comprehensive distribution theory problems

must be solved.
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5.1 Introduction

The previous sections have been concerned with the development of

different types of models and methods for estimating the radius of the

mean centered circle which includes 50% of a bivariate probability

mass. This section suzzarizes the different models and methods used..

in the previous sections, and includes an analysis of the results

obtained from problems. Although the sample problems do not represent

actual missile test results, an attempt has been made to make the data

as realistic as possible. Therefore an analysis of the problems

should show certain relationships between the iodels used to estimate

the CEP that would also apply to actual missile test data.

5.2 Comparison CF :odel I Nlith Iodel II.

The basic underlying assu.nption made in Eodel I war' that the true

value of the mean was located at the targaet, (0,0). Therefore, the

CEP in this model is defined as the radius of a circle around the

target.

The basic underlying assumptionl made in ":odel II was that the true

value of the mean was located at some point (u xSuy) away from the

target. Therefore, the astiated CZr for this .iodel is the radius of

a circle w ith center at some point, (-:,).

A comparison of the estimate of the correlation coefficient shows

that they change in muc'a thte sune manner in both models. As suspected,

a major difference between these ,d'ls is in the location of ' and 7.

This is slio, w n ier&u 71. 32, and 23 whi:h ili'strate the estimates



of tihe ux. Thre es!:i-tate of the C2P for proble-.s 2 and 3 is practically

te satIe in all three cases. Therefore w1hen the center of the distri-

bution is near the target, there is little practical difference between

the tim r=,dels. 1'owever, in problem I, the distribution of data points

is around some point (Rj) away from the center. If the procedure

given In Appendix " is used to esElmate the ratio function, then the

values obtained indicate that EP2 gives the best estimate of the CEP

for a sample size of 13 in problem 1. Also, as the sample size increases

the ratio function Increases, thus P2 is also the best estimate for
/

n > l0. The values of R.F. obtained for problems 2 and 3 show a pre-

ference for ',Idel I for small sample sizes and are very close to 1 for

largo sample sizes and therefore either estimate .rnay be used.

These proble .-.s tend to substantiate the t'act that the procedure of

:.odel II is superior to the procedure of Ndel I in large sample sizes.

They also suggest that if .iodel I is used in analyzing a small number

of observations, it might be advantageous to check the assumption of

mean (0,0) by couputing the sample means.
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6.1 Co.:,parison Cf The Independent ,znd Dependent i'%ethods Of Estimating

The CEF.

In the introeuction to the problem of estimating the C2, the

assumption was made that the errorr in the x and y directions were not

independent. This assumption is natural unless an apriori knowledge

suggests that the errors in the x and y directions are independent.

-owever, the assumption of independence in the fire control problem is

quite difficult to justify due to its complexity. Therefore, it would

seem wise to estimate the magnitude of the error involved in assuming

independence in order to find out how much difference this assumption

will mean in the deteruination of the CEP.

It was shown in Appendix A that the true orientation of the density

function was related to the correlation coefficient. If the true shape

of the density function is oriented at some angle with respect to the

x and y axes and independence is assumed, the computed standard devia.

tion is not the best estimate of the standard deviation. Consequently

the independence assumption introduces an additional error in the

estimate of the CEP.

Table f is used to illustrate some of the important differences

in the results obtained from the problems using the two models.
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Table f

Computed "1fferences Betu een Zbdels I and II

Differences
1krob-lel _del I Hodel II ._ { del I - Model I1)

.'adius -lff Correll Radius Diff in Correl, 1,adius Est. rCorrel.
of CEP est. of coeff of C:-P cst, of coeff,. of CEP of coeff.

stand . stand. ^ stand
6 dcv dev. P n 2l |dev{ e

Case 1 3.97 .60 .475 3.64 .15 .380 .33 .45 .095
2 4.15 .54 .206 3.37 .77 .081 .25 -.23 s125
3 3.55 .54 .204 3.23 .32 .320 .27 .22 -.116

Case 1 3.37 .57 -..454 3.33 .81 -.626 .04 -.24 -.072
2 3.45 .86 -.256 3.39 1.06 -.395 .06 -.20 -.139
3 3.77 .43 .031 3,71 .62 -.107 ,06 -.19 -.076

Case 1 4.32 .63 .735 4,66 .69 .525 -.34 -.06 .110

2 3.72 .57 .695 3.56 .65 .903 .06 -.08 -.208
3 3.40 .35 660 3.52 .65 .650 .012 -.30 010

The table shows some dif&renc. in the magnitude of the radius of

the CEP as estimated by the two models with the maximum difference being

.33/3.^7 or 3.3%. Also, the trend in the size remains constant between

the tuo models. That is, as the size of the estimated CEP changes in

one model, it changes in the other model in the same direction.

fraph 1 shows a plot of the percent difference in the Independent

and dependent esticx~tas versus the correlation coefficient. It should be

emphasized that the points on the graph were obtained from date computed

from the saaple problem.

The differences In the estimates of the CU? from the problems are

shon In Diagrams 34, 35, and 36. Some of the differences were so

small that these estimates were left otW. It is interesting to note

that the ditxibuttin of data ii. problem 3 thows alr.ost perfect correla.

tion and the estimstej differwoces wrc also a rAximun.
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6.4 Zf:eota Caused By The Removal Of Outliers.

The moat obvious effect on the CZP when outliers are removed is

that the CEP becomes smaller. However, there are several other effects

which are not obvious but may be important in determining which estima.

tore can be used. Table G, using the sample problems, gives a comparison

between Method I And :*iathod I and the estimates of certain parameters

before and after removal of outliers.

Table 3

affect& Of Removing Outliers On 21 P I end Ax - 70

Problem P(Type I lrror a crrelation Ai Difference in
- _ SeJffilp1tF S d,, y . v 90

Method I Method IZ Before After Before After Before After
outlier outlier outlier outlier outlier outlie

. i~umx Vmd xm ad.XeA d ... x id removedl .. Mi

Case I ,10 :05 3.64 3.12 .383 .059 .11 .56
2 10 ,05 3.87 3.04 0031 .136 .77 .24

CMe 1 00 025 3.33 2.31 -.626 .201 .81 .34
2 105 .005 3.30 2.75 .395 0.03 1.06 .52

ZUl
Can$ 1 ,05 $025 4.66 3903 .625 .306 .69 .43

2 .05 g01 3.$6 2.42 e003 .075 .65 .21

The estlmato of the CV was redueed by from 14% to 36% in the

problem by the removal Of outieua . If a probability of the Type I

emir hd been ecified as 905t the point rejected as an outlier in

problem I iould not have boe rejected by the elliptical method but

woiuld have been rejeeted by lethed ZI. This in because Method I and

othod I are mot the ame and will not necessarily reject the am

points for the am conf idene level. The effects of rmoan outliers

are shovu in Diapam. 37# 38g and 39.
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It should be noted that the removal of outliers may change both

the correlation coefficients and the difference between the standard

deviations in the x and v directions# This Is due to the large effect

that an outlier has upon the distribution parameters. Thus a large

correlation coefficient may be due to .the presence of an outlier and

not due to correlation between the errors in the x and y directions.

Therefore, before the independent method of estimation is rejected, an

investigation should be made for outliers.

so
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Thics~f ~ r C~nValues of .ZCl1 W

.0 .31 . .3 .Oq .05 .0 .0 .03 .0

.00 .74 .675 . 7 5375 .r76 °577 .7' .573 .*

.10 .3,2 .l33 .535 .507 .62 .6I . ,4 5 .693 .703

.20 .705 .70 .72 .717 .721 .'25 .730 .735 .740 .745

.30 .753 .755 .731 .76 .772 .773 .794 .700 .7, .02

.40 .302 .314 . 2) .C26 .333 .33 .345 .351 .058 .M6

.50 .370 .<:77 .333 .38 .3% .302 .338 .A5 .921 .27

.60 .34 .940 .740 . 52 .i3: .25 .9I .777 .'4 &1 0

.70 .20 1.0:2 1.0!7 1.015 1.021 1.027 1.033 1.03. 1.045 1.052

.30 1.053 1.04 1.J73 1.075 1.082 1.0!3 1. 04 1.110 1.105 1.112

.. 0 1.11C 1.124 1.130 1.136 1.142 1.14 1.154 1.10 1.IC6 1.171

1.00 1.177

Table I iS n r:::crt fro.i a table derivece a t':a :aval '.apons Laozrtt¢i',

, P'i-ren, Vir-ini, un(er t:'.c direction of :ar.y laingarren and

. 2,. - i:onato. ':x :elr table presots soLuicns for the value, o- T%

1 .. r.fcl2(4 +~) e", dv -m
C

.::cre CIs thu circle u2 + .2 . T2 2 -;nd C- for c-O( .01)

anQ! P * 3.1).99.

.et: Appendix C for vlura of integration,

35
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.L) 1  3

7T ()' Log AN) N) i -L g-
IA 'L, fj

... ~ o "N)

I
2.01 C .030 I5.1) 1. 330 11. . ,5 5 17, 13.320 23.01 2 1,033 0

2.11 0.019 5.2 1.512 l.l 6.734 17.2 13.564 23.2 .21.321
2.2i 0.042 5.4 1. 54: 11.4 .:71 17.4 13.809 23.4 21.593
2.31 0.066 5.6 1.73 11.6 7.179 17." 14.055 23.6 21.365
2 4 V 5.3 1.' 324.11C 7o3 17. 1.30 2 23.8 22.138
2.51 0.123 ,..Q 2.073 12.0 7.301 1 1) 14.551 24,0 22.412

2.C- 0.155 .,2 2.223 12.2 7.314 !P.1 14.300 24,2 22.637
2 . 7 ! 0.13 6.4 2.381 12.4 8.023 c l.4 13.050 24.4 22.62

2.O1 0.224 6.6 2.537 12.6 3.244 1".!, 15.301 24.6 23.232
2.9 0.261 6.) 2.636 12.2 3.461 1'.' 15.553 24.3 23.515
3.01 0.301 7.0 2.357 13.0 .630 1'o) 15.06 25.0 23.792

3.1 0.341 7.2 3.021 13.2 3.'00 P.2 1.060 25.2 24.070
3.2 0.384 7.4 3.127 13.4 ".121 '.4 16.315 25.4 24.34,
3,31 0.420 7.6 3.356 13. 7.344 P ', 16.370 25.6 24.023
3t4 0.474 7.S 3.528 13.3 :.5 o. 2 . 2 4. ;0
3,5 0,521 3.0 3.702 1' ." 9.74 2 O.0 17.025 26.0 25.130

3.5 0.570 2.2 3.373 14,2 10.021 20,? 17.343 26.2 25.472
3.7 0.620 S.4 4.057 14.4 10.241 120.4, 17.602 26.4 25.7 4
3.8 0.671 8.6 4.237 14., 1C.473, 20.3 17.S63 26.6 23.037
3.- 0.724 . 4.420 14.3 10.703 20.! 1S.124 26.3 26.321
4.0 0.773 ,.0 4.605 115.0 10.40 21.0 1,.326 27.0 26.505

4.1 0.833 3.2 4.7"12 15.2 11.173 21.2 1 .043 27.2 26.00
4.2 0.830 ;.4 4.31 15.4 11.407 21.4 1'12 27.4 27.17u
4.3 0.947 9.6 5.172 15.6 11.'-,4 21.6 19.176 27.6 27.462
4.4 1.005 . 5.365 19. ll.273 21.2 LP.442 27.1 27.749
4.5 1.065 10.0 5.559 16.0 12.115 22.0 i3.700 2z;.0 28.036

4.6 1.126 IC.2 5.756 16.2 12.335 22.2 1".,75 123.2 22.325
4.7 1.133 10.4 5.'54 15.4 1 .534 22.4 20.242 2,.4 2:.r13
4.8 1,251 10.6 5.154 16.6 12.335 22,5 20.511 23.5 2.".13
4.,1 1.315 10.3 6.355 1~213.077 2 2, k 20.780 23.3o - 2.12I:
5.0 1.3 I0 11.0 5.55: 17.3 13.320 2 21.050 20.0 2?.484

2%.2 2?.775
2.4 30,07

2,.6 30. 352'

23.3 30.(52

130.0 30.^46

- - - - A



TA3L& 4

Cumulative Ch-square Distribution

.005 .010 .025 .050 .100 .250

1 .0 .0 .0 ,0 .0158 1102
2 0100 .0201 .0506 .103 .211 .575
3 .0717 .115 .216 .352 .584 1.21
4 .207 .297 .484 .711 1.06 1.92
5 a412 .554 831 1.15 1.61 2.67

6 .676 .S72 1.24 1.64 2,20 3.45
7 .989 1,24 1,69 2,17 2.83 4,25
8 134 1,65 2.18 2.73 3.49 5,07
9 1,73 2.09 2.70 3.33 4.17 5.90

10 2.16 2.56 3.25 3,94 4.87 6.74

I 1 2,60 3.05 3.82 4.57 5.58 7.58
12 3,07 3,57 4.40 5,23 6.30 8.44
13 3057 4.11 5.01 5.89 7.04 %30
14 4.07 4,60 5.63 6,57 7,79 10.2
15 4,60 5.23 6,26 7,26 8,55 11.0

15 514 5,81 6.91 7.96 9.31 11.9
17 5,70 6.41 7.56 8.67 10.1 12.8
is 6e26 7,01 8,23 9,39 10.9 13.7
19 6.84 7,63 8.91 10.1 11.7 14.6
20 7.43 8,26 9.59 10.9 12.4 15.5

21 8.03 8,90 10,3 11.6 13,2 16,3
22 804 954 11.0 12.3 14,0 17.2
23 9,26 10,2 11.7 13,1 14,8 18.1
24 9089 10,9 124 13.8 15.7 19.0
25 10.5 11.5 13.1 14.6 16.5 19.9

26 11.2 12.2 13.8 15.4 17.3 20.8
27 11e8 12,9 14.6 16.2 181 21,7
28 12.5 13.6 15.3 16.9 18.9 22.7
29 13,1 14.3 16.0 17.7 19.8 23.6
30 li8 15.0 16.8 18.5 20,6 24,5

88



:A2L2 4 (cont)

.500 .750 .000 .950 .975 .990 .995,

1 .455 1.32 2.71 3.84 5.02 6.63 7.88
2 1.39 2.77 4.61 5. 9 7.38 9.21 10.6
3 1 2,37 4.11 6.25 7.31 9.35 11.3 12.8
4 3.35 5.39 / 7.7S 9.49 11.1 13.3 14.9
5 4.35 6. 3 9.24 11.1 12.3 15.1 16.7

6 5.35 7. 4 10.6 12.6 14.4 16.S 13.5
7 6,35 ).04 12.0 14.1 16.0 18.5 20.3
8 7,34 10.2 13.4 15.5 17.5 20.1 22.0
9 8.34 11.4 14.7 16.9 11.0 21.7 23.6
0 .34 12.5 16.0 1S.3 20.5 23.2 25.2

11 10.3 13.7 17.3 19.7 21.9 24.7 26.8
12 11.3 14.8 13.5 21.0 23.3 21.2 228.3
13 12,3 16.0 '17. ?2.4 24,7 27.7 2,.S
14 13,3 17.1 21.1 23.7 26.1 29.1 31.3
15 14.3 12.2 22.3 25.0 27.5 30.6 32.8

16 153 1.4 23.5 25.3 23.8 32.0 34.3
17 16,3 20,5 24.3 27.6 30.2 33.4 35.7
13 17,3 1.6 26.0 2S.9 31.5 34.S 37.2
19 w1.3 22.7 27.2 30.1 32.9 36.2 38.6
20 19.3 23,3 23.4 31.4 34.2 37.6 40.0

21 20.3 24,9 29.5 32.7 35.5 38.9 41.4
22 21.3 26,0 30.3 33.9 36.3 40.3 42.8
23 22,3 27.1 32.0 35.2 38.1 41.6 44.2
24 23.3 2S,2 33.2 36.4 3-:.4 43.0 45.6
25 24,3 2'.3 34.4 37.7 40.6 44.3 46.v

26 25.3 33.4 35.6 3.9 41.9 45,6 4,.3
27 25,3 31,5 36.7 40.1 43.2 47.0 49.6
23 27,3 32,0 37. 41.3 44.5 48.3 51.0
2 2,3 13.7 3.1 42.6 45.7 4;.6 52.3
30 2.,23 34.3 40.3 43." 47.0 50.9 53,7

_________________________________________________
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A. I Introduction

Tis appenc'ix is concerned with the orientation of the bivariate

normal density function over the xy plane. Priaiarily this requires an

investig-ati6n of the correlation between the random variables X and Y

and once the correlation is determined, a transformatlon of axes so

that the function can be integrated more easily.

A.2 Orientation of the Axes

If the correlation coefficient is zero, that is the random variables

and '' are independent, the orientation will be synmictrical with

respect to the x and y axes. This !,means that a plane parallel to the

x anO y plane will cot the density function in the form of an ellipse

W.hose minor and major axes are parallel to the x and y axes. This is

sho,-. below in figire A.1. !:ote that if 7 , the ellipse bccolmes a

/.'(O, O-X/

orientation of the Ellipse Phen -0.

Figro A.l

t.c.:roaior. c .-:iient is not zero and less than plus or

r:inus , t .ori~nta.on is offset fr th:.' th, x !ne y axes in the direction



of t , :QI 7) .3"< 27 ).s 7i;s 3 nc . .

X1 / axi

varils " 7ndi arc not Lnecner is e:f- ior. of h orlto

coe~ficie nc anc! is 'Rle Lo thau trut; orieitz;-tiQn of the uTnsitv function

with respeoct to tllhe x n1 xes. If it is ~3U~that the error., in

thIe x ancl y Oirections ara indopendent w;hon 4.;1 fact tiey are ot an

aeditional crroi v,111 !,, i~de iii cormputlng '_%e ostilrcates of th e variaw.;es.

:'his Is due to tefact t ,at the computation Lif it l 7,%, 11o -n the Aires-,

tion of the assu.3" axes rl-;y) instead of the direction of true orien-

tation 'I)~I.Te~r~ iL becomes important to obtain so.,-e

1kno!wAed~fe cC t!,e true :rientatlon ia order to ol--ain the best estimates

of thec varlrnnc . fl can be eviie b,! obtaiviino estim~ates of tbe Bnj~les

I-c:t,.-c.en Cie se axes and 0.7 true axe~s.

-1-e Poilowin- sections are devotee to 6m: -.' e ent possible ori r-

tations :eto rle 6ifferen: TrIflgc*i 1! the correlation coefficient.

~ ~.ir~i:~xof ttiQ Qiat.ti3:a o! thr ;,\s



A. 2.1 DP-.:ang ',: Thue Cricntat.cn wlhen the Correlation Cbefficli 1 ,

i S Z e Io,

If 0 ., tic d variablIes X ane Y are indep2ndent. Therefore.

o( -) enc .... his can 1 proven by "eter-ination

of eich"O thC value CO-'1hC conditional e-xpectation Jiiectly ori indirectly

using he linear predictor.

A.3,.1 Arect Aeter ina-,ion of the ond tfonal ,Xpectation if 10

fhe expecteO value of onc random variabie given the value of the

other raneow variable was defined in Section 1.2.5 as

Y)

-I. - J E(" a Tf /C,"4 I Al'

ra0

The Z(Yj.) can ba deteo-rined in the sate way antd is equal to (

1...2 Indirect 1etaiL;:ination of the Conditional i.pecation Using tu

Best Linear Freeictor.

The conditional ex,-ectatiin of one rando-. variable given the valuce

ofahe other randoo. variable Is a llnoar function of the knownv rarndon.

varinble u.rien both random variables are jointly norm.~ally distr!!uLed.

'hat; is tlie (:I") - Ay + I. where A and 3 ,Are conscants which can be

detcr:;-ino,. , linear predictors for the C .,i':ona1 ,xpcctations Xi

consicration -01 be defined as follouis.



(A. 2) 1 =u : ) V '- C . ' .

E, 21 w~~her e C1  V A ,.(Y -
2,:1:)-.(::) - 2[U- -<, wh'ero ____y:::'

, from 1.2.5

In the case ;iere e -o , oXV(X,Y) C - C - C from (A.2)
VAR) 1 2

Therefore, the results become the same as in Section A.2.l.1. That is

(A.3) (("Iy) = () and

S (Y I :' (Y)

In the case that -0 , the orientation of the axes will be as shown in

figures A.3a and A.3b below;

0,'

orientation oC thl Density Orientation of the Axes when
7'jnction wben the Correlation the Correlation Coefficient
Coeffiient Is Zero, is Zcro,

Fi&ure A.3a Figure A.3b
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A.3.2 )termination of the Orientation if P !.

If =. the E/i 2 aid t (X) will lie along the same axis. This

can be proven by using rh7 best linear predictors in forc-ula (A.2) and

the definition 0C te correlation coe.ficient. That is

(.4) 1 WV(Y " and therefore OV(,Y) =V ( A ).

'hen using fonxulc (A.2) B (YI x)-E(Y) +C Lc-(:)J =2(Y)-C 1 E(::) +c1X

where

(A.5) Cl C V() using the result in formula A.4. Since

E(:), a(Y), andI % are constants, the random variable i.'fX) is of

the orn

(A.G) E (YI:',)-A::+1 where A-C1  and 3-Z(Y)-E(:Z) I . The tangent of the

angle bet:ween the y axis and the line i(YiJ) is

(A.7) - an - C 1 c IXV(y in the case where t-1.

.he tangent of the anglc betwven the x axis and the line Z(:UY) is

dete 1inel in the s-le .ay and in this case

in the ase where P 1. S ,, 3'1'n t)

t j a te s i s h e th*ie sam.



h o L>t cas;e = 1 the orientation of the axes will be

as si'o, iA fa .uet -\.4a n'..4b below.

A

N )

/ j91&/ /)

1 0

Crientation of .. 1nsity Orientation of the Lxes when
Function iwhen the Correlation the Correlation Coefficient
Ooeff~icient is 1. is 1.

Fi1,re .aFigure A.4b

A.3.3 Dcte-M.ination of the 0.rientation of the Axes if OC N' i.

f 0< ( 1, tle two lines E d) wnd 2(.I,) ill not be the same

or perpendicular qn(! iill be oriented as shown in fEiures A.5a and A.5b.

-his can Te proven by usin- the same method as in Section A.3.2, except

that

(A, .; < C..,X , .1 , < 1

it follo rro- this that 0 4 W.'( ,) < vAA( I F..[70 (Y) Then usIng

formulas A.7 and A.1 with the definitions of the constants in formulas

the dnr" angles qre

A" V.1.,-,. -) .2  ?" .... . ,'" ~ ~ - v(.) ..
" ,,::~fvr 7 1., . : '



the comnpltce range of possible values for the tw angles using A.9 are

11~l) 0< J) < 7Thn1 1 -0< 4 T a i ' 1 114

in this case the orientation of the axes will be as shotm in figures

K / /, -I
A.5c~~ andA. 1

/, .-
0$(4,Uy) x aw44N,) ) axls

/ 1 /
.//

/ //
/

Orientation of the enslty C.ientation of the Axes when
-unction when 0 ( < 1. the Correlation Coefficient

is0<e( 1.

.'i zuro A.5a Fig3ure A.5b

A.3.4 Dctermination of the Orientation of the axes i -l14P 0.

-0 <e( , it Zollowt from formulas A. , A.O and A.11 that

In this case t' orientation of the axes will be es shoxm in floures

A.6, and AGb.-



IA /

Orientation of the Density Orientation of the Axes
Function when -1 < 0 0 when -1 < ( 0.

Figure A.6a Figure A.6b

A.4 Illistrations

Although the true orientation of the axes will not be known, it

can be estimated by, using the various estimators shown in table h below:

Table h

Estimators Lsed In Determining Estimated Axes Orientation

'7stimator used Value Estimated

x S ( -0
MAR(X)

VARI Y
16Y AR(Y)

t V(xY)

The estimated parameters in the illustrations which follow are

determined by using the data from the example problems in Section II,

A.4.1 Illustration (1)

The data is obtained from example problem no, 1 with a sample aize

of n a 25.

97
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1.2, 7 1 ., . .6, y -4, -.05
, = '" 'E(:'1 - 2 (X)

C(Z') + C - 1, (X) + (Y - )

where C1 - x - -.05 - Tang C2 - Y - -.04:TanO

X V
9 1760519 0 m 177031 ,

The orientation of the axes is shown in figure A.7

, I.

2stirmated Orientation
of the Axes

Figure A.7

It should be noted that the orientation of the axes in figure A.7

iplies that the random variables X and Y are nearly independent and

that the independent model of computin8 the C.P can be used with only

a snall error due to the orientation. The corputed values for the two

different estimates of the CEP are 2= 3.28 and 3.25

A.4.2 Illustration (2)

The data obtained from problem 3 with a sample size of n - 15.
-.5, . -.2, - 10.79 - 15.4, -1.59 e .- .

204~ - S(T) + c fx-9Z()) , +(=2) Y-.. 2

98



= c ,. --- 1.052 = Car = 0017 )= .755 = TanO

VAR(X) VAR(Y)
470 1, = 3703 ,

The orientation o-f the axes is sho~m in figure A.S

/ /A

/ /A ax/S

/

,I /

/

Esti ,ated Orientation of the Axes
wven Dependence is Implicd

Figure A.

It should be noted that If this were the true orientation, it

implics almost perfect correlation between the random variables X and

Y. This orientation will exhibit the greatest eifference in the esti-

matcs of the C Pf independence vere initially assumed. The cormputed

values for the to different estimates of the CEP are CP2= 3.52 and

CV11 - 3.72.

A.4.3 tllu3tration (3)

.he data for this illustration is also obtained from problem 3 with

a sample size of n - 15. -owever, in this case, the two outliers have

been reamveC and the sam.ple size usid for the corp-;tation is 13.

09



x ., 4, T- 3.C4, T 4.8, 32,

E(.I1) 40 .') + -- () + .- Z

where -
C I = .03 - C .06- , Ta6n0

- 503 = 3045t

The orientation of the a tes after removal of the outliers is shown in

figure A.9 d

Estimated Orientation of the .xes
After Removal of the Outliers

Figure A.9

It should be noted that the removal of the outliers rotated the

axes enough so that independence could be assumed With only a small error

in the esti,:ate of the CEP. The computed values for the two different

estimates of the CP are t2= 2.42 and C - 2.52. Thus the removal

of outliers will not only reduce the size of the CEP but may aid in the

d'erwindcion of whether the slmpler :;,del of independent estimates

r-a: be ,ised or not.

A.5 Transforiotion of th3 Axes

In or,*hcr t, ,4 ,rtaLu tr.i,: (1i) oZ Zcuction 1, It is necessary

to tranaferm the axes, Z.i-s t..sucr . o n be done In several ways

lOl



out the use oC -i;trix notation can greatly simplify the procedure.

It is nccessary to first define some of the concepts which will be used.

A.5.1 Definitions: fat. a12

A.5.1.1 The ziatrix A=(aij) where A-a will be used for

simplification. '21 22

A.5.1.2 The transposed matrix is defined as A' a2:\a 1 a 22

A.5.1.2.1 Theorem 1. The transpose of A'(A,)'=A

A.5.1.3 The inverse of A is defined as the matrix A-1 such that

A.5.1.4 The identity matrix I -(i 0)

A.5.1.5 A symetric matrix is defined as a matrix such that the

transpose of the matrix A equals A. That is

a12 a22). aal l a12\.

AI  tat a21 821 a22)

A.5.1.6 If C Is a 2x2 matrix such that C'C - I, then C is defined

as an orthogonal matrix and C,-C-l.

A,5.1,7 A characterlstic root of a 2x2 matrix A is a scalar A such

that AX- A X and AX- AX0 for some vector X 0 0. It follows

that if A is a characteristic root of A, then (A-AI)X.O

and r.herefore /A-A 11- 0.

101



(0 22)

.~ .. ,.it.7 azC i.rr: is~ 1 ~C'ained' as

A. j 2 - biv r i Lf rml Ilp

I T

is ad A 1 (A 1 )' hus 1611 ;:C p'~i~~Ca :ey :~

.ietric -matrix r thorc exists on o n1~aixC*~ '.

where D is a 01.1gona21 matrix W~~. l~VI:1:at

istic roots Of. AI. . I "Ic. rix toli us be

In ordner to frind thle chiractaristic rcoats cf A- 1 stfirst iet'.

identit, mr trt i 1 3). then. IN scl )A(1

'21e clhrae' CriStiC roots Of a s~eticz:ri~ icc~~c~~m

charactcristic :xyo.iIf(AI~~ l

~ C)Best Available Cor,:



11 -1,Ca :on:.;. cqua-ric cqjation

7x (Vx V-, ~ 7~#

-7-

7x T (7, j IL 2

7F T W

_____+_/ _

A ~ 1) (T~AQ

I ( " VV/

'7 nw: 1javc Ci flornn3 bivari.ltr !ir ty' Low.Liclc u i th (Cj-)

varinb1cs Uan~d V such t!,,t the dti ~I ist~iribucod

an CZ uJ:iore C is tic~ orthozonal ;atrix' Ckcinc-d .:!,i sic-sfic~s

the rea,tion s ip Cf, 1 C* s)C

an f -t.c ti- cia ters I,.vo 1~ 1- L;~ 'c CO Z.1 Lo;U

s ho u I: aiso '0e :c't. o ci lau - c orct)to (V( VI .......

Best Available Copy



:;1lipZQ For-rcnI by 0-ttn t'ho 7iviriate
.:)e -csit'* F.--nCtion VI: V) b,. a Plane

Para-llel to the u,v J),C,

Fortunatcly it is not I.zcessary, tc co:;*.puto t'.c ortho,-onal ~::~

T..-Ich satisfies ti-e rclationships cnovc siacc th,-, characteristics c'.2

ortho-ona1 mr-W: rcniirez that CI C an-.C c.?h~

* (A.14) (Ut*~ : A* (CI (Z 'CA*C I (Z (7~ 'A(7

butC' 1  A 1

'thercforc (C A ) ' A~ 1A

CC-1 ArC-C.*-

Thcreforc, It carn also bc sliom that toc., corresponding areas under the

density functions are equal. Ihat is

(A. 15) ff:j .uV) i'v- fj'7E.:I (m y) iX(IY

27i Adoo elqel!AV ISeO8
1,4



-his is because ~iA~ Z'AZ as sho-m above and A'(IA11 . It is

shoun above that C-ACA*t 1 and the detei-minates of the two ter;-s'

re r n -'ofr uevu,v)~dv~ff:yxYd

Adoo 9jqujeA'V 1Se8



APPENDIX B

12AlKS ON "STI:.ATION

1.1 Introduction

The theory of estimation is concerned with the problem of finding

functions of the observations such that the distribution of these

functions will be concentrated as closely as possible near the true

values of the parameters estimated. The density function of the obser-

vations under consideration was described in Section I and the para-

meters which are to be estimated are u, U Q 2 iT and (.
Y.

Some of the properties which are desired of the estimators were

described in Section 1.3,

3.2 r~aximum Likelihood Estimation

If f(x , lq, X ) is the

desi t function for a random s,,,i;Ia of size n with uxinnotai parmeters

,uUy, T1, , and o , then the likelihood function is

A/(131) L =i!, £Cx ("*,x, ) "

Since it is more convenient to 'eal sums tha products it

is easier to maximize he logarithm of the likelihood function rather
than the likelihood function itself. It shoul be noted :het the

logarithm has its maximum at the sa , poihr- as does the likelihood

function. The log of (..) is

(B.2) -L/og a; -- 0- . -

___ __ __ \ f( ..... I Y 0 ) L, ' .) q. i - 1 ; ) j
. 1- I
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The maximum likelihood estimate of each of the unknown parameters

is obtained by setting the derivative of the function with respect to

each of the unknown parameters equal to zero and then solving the

resulting equations simultaneously. To illustrate this procedure, the

assumptions will be made that V 7y- 7 andC- 0. For this special

case, formula (B.2) becomes

(B.3) L' - -N log 27r -N lo 8 V > r A -. i) +

and the partial derivatives are
Na

6 _L 
Al At _ __

d 7 -a - -8 + ..

NN
C) L T(x . ) - [x N /

4 o W) At" #V' ) ' y  ) ]

-07

3quating the partial derivatives to zero and solving simultaneously,

It follows that,

(B.4) lX

(0.5) U * fe

(B.6) V- +aii

Since maxiniwnt likelihood estimators are In general biased esti-

mators, it Is ne'essa4'* to examine themi to see whether they are unbiased.

Pbr exainple, if thc expected valuo of the estimator &in equal to B,0

where 9 is the true p'.rametcr, then
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(B. 7) E -and is an unbiased estimator.

Since E(xi) ux  and E(y i ) = y for I -l ....... n, it follows

that i and 7 are unbiased estimators for ux and uy respectively.

The expected value of the estimator in formula (B.6) is obtained

by recognizing the fact that there are 2(n.l) independent squares in

the sum and therefore 2n 9I7 is a chi squared random variable with

2(n.l) degrees of freedom as defined in formula (4.5). Since the ex-

pected value of a chi squared random variable is equal to its degrees

of freedom, it follows that

(13.8) E 2(n-1).

Therefore,

(1.9) E(Ta) " N-IV .Bv"
aN

and Luz x- P "+,- I " san

unbiased estimator of VTwhen the variances are equal. Ahen the vari.

ances are not equal, the same procedure may be used and the unbiased

estimators of T and Vy1are

" .(X," -

' )-/

1It sh'ould be not~edl lthat the estimators (D.WO) are used in b. l II.

Also, if the ass,.ption is ma-ie that tho. trie values of the means .re
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zero, thon the estimators for the variances in .odel I are also unbiased.

The estimators of the :--eans and variance used in ;odel I and ',,odel II

are, apart from the biasing factors, ,maxium likelihood estimators.

.o.wever, it should be noted that the CCP is a function of the

standard deviation and not the variance. The following section will

determine unbiased estimators for the CEP using the procedure in this

section.

3.3 Unbiased "4axi-ium Likelihood" Zstimate Of The CEP: When

Vx " =V - T" and C -0.

-he rmaximu-m likelihood functionofTu hen ux = uy = 0 is

in'e the sum in (3.11) divided by 7' has a chi squared distribution,

it follows that the square root of a chi squared random,, variable di-

vided by its degrees of freedon has a chi distribution. The density

function of a chi distributed random variable w:ith 2n degrees of free-

doa/ i s

N

(B.12) fu(U) = 0 _u

0 u 0

;Yhere f(n) is th ga,-rrA function with parameter n.

iS, n,



(2.13) E (7W)T an

_____ X; YA' is an

unbiased estimate of T and therefore

(B.14) CEP** - 1.1774 7 is an unbiased estimate of the CEP.

The imaximum likelihood estimator of 7 when the means are not

zero is

(B.15) - -

IV

Therefore,

and

r (N-) Is

an unbiased estimate of T~ Therefore

(B.18) CFPi* - 1.1774 V is an unbiased estimate. of tha CO.

he reader may be interested in the magnitudes of the biasing

factors and a comparison of the biased and unbiased estimators of the

CV. The results obtalned using the data from the sample problems are

presented in Tables I and J.
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Table I

Comparison of the Biasing Factors of the Two Estimators

Case CEP** CEP-*
12

B 11 -/-LoQ.L-0- 1.01 B2 1 - 1.09

2 B12  5 - (15)- 1.01 B22  1 I /(14)- 1.04

, (1.5)/-(14.5)

3 Bl- 25 r25)- 1.005 B .2 F'M2.- 1.03

Table j

Comparison of the Estimators with the Methods Used In Sections II and III

_________ _____ 1,2 2 2

1 -1
Case 1 4.20 3.97 1 4.13 3.86 3.64 3.72
Case 2 4.13 3.84 4.10 3.95 3.87 3.88
Case 3 3.53 3.43 3.51 3.29 3.28 3.26

2
Case 1 3.55 3.37! 3.50 3.47 3,331 3.55
Case 2 3.509 3.45 3.51 3.48 3.39 3.52
Case 3 3.83 3.77 3.78 3.78 3.71 3.74

i3

Case 1 4.76 4.17 4.69 4.76 4.66 5.02
Case 2 4.10 3.65 4.03 3.,2 3.56 4.21
Case 3 3.69 3.36 3.63 3.73 3.52 1.72

B.4 Oomparison Of The No Estimates: Relative Efficiency

.hroughout this section It ia assumed that - 'and a 0.

It can be proven that CD** has gr-ntar efficiency than any otherI
unbiased linear sawple statirtic vhen the mean value is (0,0). In case

llt



the mezin is not zero but is kno;rn to be small9 this estimate should be

considcere,'. C:L?2* is asYmPtotically efficient -hatcver the population

mean may be, hence, if the mean As greatly different from (0,0), cF**

will be a better estimate than CZA2*. 11ow:ever, because 2 degrees of

freedom are lost in estlmating the coordinates of the mean, the estimate

CST* will not be as precis, as %EP** for small values of (iUUy).

In order to determine whether to use CEP** or C:P** when it is1 2

knom that the true mean is close to (0,0), it is necessary to compare

the two esti-mates by some criterion. The cthod wlhich will be used is

the ratio of the relative efficiencies. 'hen "" and -ar useC,

the Zormula is

(3.19) :oF c1(C... ~tr)a3 FL(,V _ .

E'L(C EClmaJ

This co-aparison ray be done by- assuuing that the true mean is

either some point (uxUy) or (0,0). In tie case that the assumption is

made that the true mean is (lu y) the joint density function is

(B.20) f(x,y; uxyF =t ex[- [(KTT-( y)'

WheA it is assumed that the true mean is (0,0), the joint density

function is

(B.21) -(x,y; o0or )7- -2--[ -x"

ThIe development of the ratio assumin that th. trae mean is (0.0) follows

the procedure applied in formula (B.13). rth, result is,

/ /f:
(3.22)tE



]A
(B.23) - T) -

Com.bininZ forimulas (B.22) and 3,23), the ratio function Is

ri'(/V/ ,/
-I

,%' (N-')
i ( .~024) R, 7. -i(~

When the mean is (0,0), the ratio function in (B,24) is les than

1 for all n. Table k presents values of the ratio funct..on for

n- 2(1)20, 25(5)50. P,B, :branda tables this ratio for n - 2(1)3.

Table k

lValues Of The 'atlo Function When ux  u #A 0I

S n R, Fe n RtF,
II

2 .482 25 .959
3 ,656 30 .965
4 e743 35 .971
5 .795 40 .974

1 6 9830 45 .977
1 7 4'854 50 .979

8 .873
9 837

10 .8
11 ,908
12 , 15
13 :92i

14 ,'27H

15 .932
16 :937

.17 940

19 . 47
20 .94')

if It it known that the true wean I aat some point (u xu ) than

formula (,2o)) to thu jotnt dintiy function of the component error*.

The Re.? ratio for thI: case t.ss devulopea by 11,D, kbranda In reference
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(3), In order to find the n .ean square deviation of rai-': , the :a:c
2

procedure can be followed as in formula (3.13) and the result is the

same as formula (3-22). The mean square error of CUP** is a function

of u and u * branda assumed for ease of computation that u - kx y x

and u W It2  .Y 2

Lotting u be defined by

IV .

(3.2.u - -- . -- ) u has a non-central chl

squared distribution. Values of i.F. shorn in Table 1 (an erpt from

Table (2) in reference (3)) were obtained by putting k, M i2, and vary.

ing k from 0(.1)1.0. The results of this derivation show that as n

Incroases, the ratio function decreases for a constant value of h. It

can be ascertained from :his table that for large n, CZY.* will be the

best estimate unless k equals zero and Ut *will be best for small n

and small values of ke The practical use of the ratio under these

assumptions require the use of estimates to obtain the values of k

&nd k2 and although not exact$ may still supply some useful information.

Table I

(I Ca E (CICP 2I k 2) OO 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

S*41 487 .503 .530 .575 .639 .728 .649 1.01 1.21 1.45

3 *656 ,663 .685 .727 .796 .903 1.06 1.23

II 4 s743 .751 .777 o829 .919 1,06 1.28

S .796 .804 ,834 o893 1.00 1.18

6 .830 s838 .869 .937 1.06 1.23

7 .854 *364 9896 .972 1,12

e873 .384 s917 1,00 1.16
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A po~si;bte ?.ece'ur :  for '-i: % .'bic 1 is as fclel :

Ic valtic ne 7 art. firPt c ,1P',Ucd, Then V and Vare com.n-

puted using fortua (7.11) and (:.15) respectIvely. The estimated

value of Ic nnd k will hcn equal

. 2

-X-

'.'j U itn 3 % 1 ;2 and ii, a a ly ,:i oL La ble 1 ..-.y slows wien C4"I-*

2

is not the bert estirmate. 'Thc readcr sitould *e cautioned t-at no

att~wpt hts !ecn ,iade to theoretically justify zhis procedu:re,

-In order to bettor illustr the above, the ocdOralULCr values from-

the exa:plc problaen ror cane I are s:otm in tabc m.

Comuted Values of k

1 1,2 2,0 3.5 3.2

2 1.0 .1 3.0 3.0 3.0 .333 .033 .33

3 .6 .31 4.1 4.2 4.1 .144 .073 .10

Analysis of Table m %sngY the r.bove Values

1 for :' . it,", > I>1 or all n >r', therefore CP is best

o.217 < 1$ for n 3, therefore is
fo r t - .20 9 ? eF , 7 . 7 7 I , f r n -8 th e o r CZP i

slIghtly better.

3 for 1 - *109, s .,134 < I for ii - ,. C,Wl* is better.

3est Available Copy



UPE.:DI x C

"his appendix discurses !he details of the integration introduced

in 2ectionr, II a;d IV. --e integration oE an ellipse or a circle oveK

the bivariate normal density function :.:ay be si:zplified by makiZng the

trmi:fo'maz:ion e-p1laincd in Appendix A. That is from equation (A.15)

CC. 1) C k(x,y)- wr'

..... ..xp 2 u
, 2 7V Tv-

C.2 Integration Ovur Circle 6

The probability that a random point (,,V) w:ill lie wit.in a circle

" ith center at the orlgin and radius k Is .n'ittcn as

(C.2) P( U2 . 2  . T, ) /j, ,(U,v)du~v

7hc two illustrations in figure C.l show the gcoatric area of

integration.

6 "Circular :;rror Probabilities" by H. Leon Hlarter /4/ of Aeronau-
tical Research Laboratories.
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0-o

A

/ .... x/-

Integration of the .ivariate Density Function Over a Circular Reogion

Figure Col

In order to si.plify equations (C.1) and (C.2) let

~Vm

(C°3) -, a msing,

thcn

xhere

not) let C - , Si/G /I"OS' and the probability to

7tt t

" 0

let C0,1 (I+04Qj0- 3 C i and th~e probability Is

Por~) JeCPfj-Z [(C'+) +( IC O 0] d Z d 0

0117



iI
) Ci I aiil,-. il robabi lity becomes

(.5)

This form is integrated using the trapozotdal rule and utilizing

computers to do the integrating.

-'or example, the curve below represents so:ae function that we wish

to integrate over the designated interval. ",;e can divide the interval

into equal sub intervals (dO) and suru all of the sub intervals. As the

sub intervals bocom:e saller, the accuracy of this type of integration

Lccomes bhtLcr and this sumr,:ation tcchnique approaches the actual area

vnder the curve.

0

:r8:)Lozoida1 _ccnin':v ,2 inl .ratin& Udt.'r a Arve by :ku::'ation

7i- , .2

.h. ',;:ul~'t ion or Integration x:iLU n lntrvalc t m,. bcco::4es

T C'q1 (V;-1) ,

-itcre Q 7"
t
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th chebysc.,;..'-pI~ n1;nc l i'1r so.i Lhc; rbm that conver'-es mre

~al~y ~iLh ... ,~$'cln hi's cani be showu by co,,aparina the

coniverzcnce of~ Lhe tWo aet'&IOdS. I~ we le t CO D x -T (x), then

IMe

The for~iula for Intertration now beconaes

(C.7) 7T(AC 2. *____ '-/) 0)

:'his surzmation is now, faX~ir !H.i:crent values of k,c, and P,(k,c).

C. 3 I Oaw!~ vr "a lipsc

'he probability; thtat a raa~do. point (h',V) Aill lie vitlain an ellipse

wi C, ccit~r 'It L11C Orizlil iS uritten as

Jhc t;.: illustrations la fiTlgtrc C43 show the ,co -etric iarca of intecation

Volume. ofrgoino b ~n.O.t
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I
.ote thaZL i ct', varianccs ire equal, this o is also circular,

the three di-cnsional for..-. being a perfect bell and the tVO dimensional

fom being a circle.

In order to further sLplify this form let

(C.9) u - M V-O-SG, v - WV SIN@, then the probability becomes

P(k,AG) 1 ((exp -d where Wt'V
2 7r' V-, 'I" )

Ai

thu s,
:.: K

W -P

71r/' 0

Ton'tula '.10 ca- : b mtwre,!i dlrectl b, first integrating with

,c s)pVct to 4 and tn(. A'iLi respect to m' .i"fter inte-ratin- with respect

to rp the formula becomes

(2.I) 14%- "

0

If :e let t-,,,., the ,p'othbIil state:iont beco,,aes

(.2 ~ ,t) .Ie' dt uhoro C (t) is the chi squared denoity

rtfcton iWlit ttv ;"c.-rces of freedo.Io: as defined in £onTrla (4.5)

,41at is

ISbr any value of i'(k,t) the value oZ k2 can be obtained Eromi table 4

"o emntcrin~:i w1, (1,t) and 2 deo, ees of frecOom.
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